
Characterize and Classify HPC Applications Using Machine Learning Models

Zhengchun Liu1, Rajkumar Kettimuthu1, Ian Foster1, Nageswara Rao2
1Argonne National Laboratory; 2Oak Ridge National Laboratory

1 ModSim components
Our research falls under the ModSim 2019 topic area “Modeling and Simulation of Artificial Intelligence
and Machine Learning as a Method of ModSim”. Specifically, for all the jobs submitted to Mira in 2018 at
ALCF, we combined and correlated scheduler logs (recorded resource allocation), Darshan logs (recorded
file I/O), and Autoperf logs (recorded MPI calls and hardware performance counters). Our comprehensive
analysis broadens understanding of factors that influence HPC application and system performance. We
believe these insights are valuable for guiding current system and application optimization, and designing
future supercomputers. Based on our analysis, we engineer features to classify HPC jobs. We trained a
machine learning model based on our features can get a classification accuracy of 99.6%.

2 Target application
This work was focused on HPC applications run at supercomputer center, e.g., DOE leadership computing
facilities. The big picture here is using machine learning to enhance HPC applications and HPC systems.

3 Modeling techniques
We extract interpretable features from logs to represent tasks in order to study the commonality of HPC
applications. The features we used so far to represent a task in the machine learning model space are as
follows: (1) Fraction of run time spent on communication (i.e., time spent on MPI routines); (2) Fraction
of run time on file I/O; (3) Operations per second and floating point operations per second; (4) Number
of processes (i.e., MPI rank) per node; (5) Average RAM fetch/store per CPU cycle. As one can see, all
the features are raw (not derivative) and interpretable. This makes the machine learning model trained
with these features and its inference are possibly interpretable. Machine learning models will be trained
to classify applications so that to (1) justify if the HPC resource is actually used as the initial allocation
proposal; (2) detect anomalous application behave because of either user’s misconfiguration (e.g., scalable
parameters) or system exceptions.

4 Preliminary results
The t-SNE is a technique developed for the visualization of high-dimensional data. It converts similarities
between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between

Figure 1: 2D t-SNE embedding of the task
representation. Dots (tasks) with the same
color share the same executable name.

the joint probabilities of the low-dimensional embedding and
the high-dimensional data. In order to get an overview of the
representative capability of proposed features, Figure 1 plots
the two-dimensional t-SNE embedding of the feature repre-
sentation in which we label points using color for top 10 ex-
ecutable names and the rest executable names are marked as
red. Here we assume that different jobs with the same exe-
cutable name are runs of the same application but configured
differently. As one can see from Figure 1 that jobs’ executable
name are represented by features pretty accurately. We note
that t-SNE is used for visualization purpose only, which we be-
lieve can somehow demonstrate the representative capability
of the proposed features.

To classify if a given job belongs to any of the existing
applications. We trained a classifier using gradient boosting
tree (XGBoost). By using 70% of the data (320k jobs) to
train the machine learning model and testing on the rest 30%
(135k jobs). The model can identify the application with an
accuracy of 99.6%.

1


	ModSim components
	Target application
	Modeling techniques
	Preliminary results

