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4. One more successful case

Summary: Synchrotron-based X-ray tomography is a noninvasive imaging technique that allows for reconstructing the internal structure of materials at high spatial resolutions. Only limitted
X-ray is allowed for in situ or dose-sensitive experiments to avoid sample damage or capture relevant dynamic phenomena. These low X-ray dose imaging conditions yield noisy
measurements that significantly impact the quality of the resulting reconstructions. We present TomoGAN, a denoising technique based on GAN, for low-dose imaging conditions. TomoGAN
has been evaluated in two photon-budget-limited experimental conditions: (1) sufficient number of low-dose projections (based on Nyquist sampling), and (2) insufficient number of high-
dose projections. In both cases, angular sampling is isotropic, and the photon budget is fixed based on the maximum allowable radiation dose. Evaluation with both simulated and
experimental datasets shows that TomoGAN can reduce noise in reconstructed images significantly. Furthermore, the quality of the reconstructed images with filtered back projection
followed by TomoGAN exceeds that of reconstructions with the simultaneous iterative reconstruction technique, showing the computational superiority of our approach.
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Image produced by conventional reconstruction. Image following enhancement by TomoGAN.

Figure 2. Two different reconstructions of a noisy experimental dataset, constructed by subsampling 64 projections from a
1,024-projection shale sample dataset. On the left, the results of conventional reconstruction, which are highly noisy. On the
right, those same results after denoising with TomoGAN; the features are much more visible.

facilities by using the same technique but different imaging conditions (different x-ray sources and detectors). We simulate two
scenarios: (1) picking a subset of the x-ray projections, to simulate reduced number of projections as in the case of a lab-based
CT system, and (2) applying synthetic noise to the x-ray projections, to simulate short exposure times. Both scenarios lead to
noisy reconstructed images. We use one dataset to train TomoGAN and then evaluate the trained model on others. We compare
the denoised (DN) images with ground truth and measure the quality of denoised images using (1) the structural similarity
(SSIM)26–28 index and (2) image pixel value plots. Our evaluation results show that our approach can significantly improve
image quality by reducing the noise in reconstructed images. We believe that this approach will also be effective for improving
reconstruction quality when the same sample structure is imaged with different techniques with different imaging contrasts, for
example, in multimodal imaging systems.

Methods
We describe in turn the TomoGAN model architecture, the process by which we train a TomoGAN model, and the datasets and
experimental setup used for evaluation.

Model architecture
Generally, the task of denoising a reconstructed image can be posed as that of translating the noisy image into a corresponding
output image that represents exactly the same features, with the features in the enhanced image indistinguishable from those in
a ground truth version. Machine learning models learn to minimize a loss function—an objective that scores the quality of
results—and although the learning process is automatic, the model still must be told what needs to be minimized. If the model
is (naively) asked to minimize the Euclidean distance between predicted and ground truth pixels, it will tend to produce blurry
results29 since the Euclidean distance is minimized by averaging all plausible outputs. With GANs23, we can instead specify a
high-level goal such as “make the output indistinguishable from reality.” Thus, blurry images are not acceptable because they
are obviously distinguishable from the real image.

Technically, a GAN is a class of deep generative models that aims to learn a target distribution in an unsupervised fashion30.
A GAN combines two neural networks, a generator (G) and a discriminator (D), which compete in a zero-sum game: G
generates candidates that D evaluates; those evaluations serve as feedback to G. Thus, GANs are designed to reach a Nash
equilibrium at which neither of the two networks can reduce its costs without changing the other player’s parameters. In
this paper, we train a DNN to create a generator model G to map a noisy reconstruction (i.e., conditionally use the noisy
reconstruction as input to the G instead of a random value, as in a standard GAN23) into a form that can fool an adversarial
model D that is trained to distinguish reconstructions of noisy projections from the enhanced noisy reconstructions created by
G. Thus, we use G to enhance images; D simply works as a helper to train G. A classic GAN generates samples from random

3/17

DL techniques use multilayer (“deep”) neural networks (DNNs) to learn representations of data with multiple levels of
abstraction. These techniques can discover intricate structure in a dataset by using a back-propagation algorithm to set the
internal parameters that are used to transform data as they flow between network layers. Recent advances in DL, such as
convolutional networks15, rectifier linear units (ReLUs)16, batch normalization17, dropout18, and residual learning19, have
enabled exciting new applications in many areas. DL techniques have been applied successfully to a range of scientific imaging
problems, such as denoising, super-resolution, and image enhancement and restoration20–22.

Image produced by conventional reconstruction. Image following enhancement by TomoGAN.

Figure 1. Two different reconstructions of a noisy simulated dataset, constructed by subsampling 64 projections from a
1,024-projection simulated dataset containing foam features in a 3D volume. On the left, the results of conventional
reconstruction, which are highly noisy. On the right, those same results after denoising with TomoGAN; the features are much
more visible. In these images and others that follow, an inset shows details of a representative feature.

In this article we explore an alternative DL approach to image enhancement, namely, the use of generative adversarial
networks (GANs). GAN approaches are unsupervised (or weakly supervised) and can learn from limited training data, which
makes them especially suitable for experimental data collected at synchrotron light sources. In general, a GAN involves two
neural networks, a generator G and a discriminator D, that contest with each other in a zero-sum-game framework23. Training a
GAN model involves a minimax game between the G that mimics the true distribution and the D that distinguishes samples
produced by the G from the real samples. This approach not only is more resistant to overfitting but also allows for quality
enhancement with much less data than required for conventional supervised DL. GANs have been applied successfully in
medical imaging24, 25 but have not previously been used with high-resolution imaging techniques at synchrotrons. The challenge
in the synchrotron context is that the high-resolution images produced include finely detailed features with high-frequency
content. Approaches developed for medical images are typically insufficient since they are tailored to easily recognizable
features with low-frequency content and, when applied to high-resolution images, can introduce undesired artifacts such as
nonexistent features.

Our GAN-based method, TomoGAN, adapts the U-Net network architecture24 to meet the specialized requirements of
improving the quality of images generated by high-resolution tomography experiments at synchrotron light sources. We
demonstrate that the TomoGAN model can be trained with limited data, performs well with high-resolution datasets, and
generates greatly improved reconstructions of low-dose and noisy data, as shown in Figure 1 and Figure 2. We also show
that our model can be applied to a variety of experimental datasets from different instruments, showing that it is resilient to
overfitting and has wider applicability in practice.

We extensively evaluate our approach with real-world tomography datasets in order to prove the applicability of the
proposed method in practice. These experimental datasets are from different types of shale samples collected at different
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X-ray dose affects reconstruction quality. However, low x-ray dose are used in practice for 
sensitive samples or samples with dynamic phenomena. 
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The proposed TomoGAN has also been applied for the joint ptycho-tomography problem for reconstructing the complex refractive index of a 3D object. Specifically, there is a
ptychography process to reconstruct projections needed for tomography. However, ptychography experiment is very time consuming (~month) and less datapoints results in
noisier ptychography reconstruction and worse tomography images. TomoGAN was used to enhance tomography images with less data points needed, i.e., faster experiment.

SIRT + total variation (conventional SOTA, 550ms) Filtered Back Projection (42ms) + TomoGAN (4ms) 
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Left: Conventional reconstruction, which are highly noisy. Right, those same
results after denoising with TomoGAN; the features are much more visible.

Left: Conventional reconstruction, which are highly noisy. Right, those same results after
denoising with TomoGAN; the features are much more visible.

Conventional vs. TomoGAN-enhanced reconstructions of simulated
data (left) and shale sample (right), subsampled to (512, 256, 128, 64)
projections. In each group of three elements, the two images show
conventional and TomoGAN reconstructions, while the plot shows
conventional, TomoGAN, and ground truth values for the 200 pixels
on the horizontal line in the top left image.

Conventional method versus TomoGAN enhanced
reconstructions of simulated data with intensity of
10,000, 1,000, 500, 100 photons per pixel (i.e.,
different exposure time).

FBP takes 42 ms to reconstruct one image 
(using TomoPy) and TomoGAN takes 4 ms to 
enhance the reconstruction, totals 46 ms per 
image. In contrast, the SIRT based solution 
(using TomoPy) takes 550 ms (400 iterations), 
i.e., 12x faster. Times are measured using one 
Tesla V100 graphic card. Moreover, iterative 
reconstruction does not provide better image 
quality than does our method.
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