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Motivation

Leadership computing facilities (A.K.A supercomputer center) collects 
various logs for debugging, troubleshooting, auditing purpose etc. 
Reuse logs for characterization of applications, i.e., without benchmarking. 
Closer look at real applications in production, to guide design of next 
generation computer via hardware-software co-design. 
Researchers and tool developers to build new, or optimize existing, 
frameworks and runtime to better assist actual users. 
…
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Background 

Terms:  
Application: a program (executable) that runs at facility. 
Job: The computation on the computing resources allocated in response to a user request. 
Task: An application execution within a job. A job may comprise one or more tasks. 
Process: An MPI process/rank. 
Communication: Inter-process communication via MPI, whether inter-node or intra-node.

Parsed logs (csv files) are available at: 
https://reports.alcf.anl.gov/data/

Datasets:  
Cobalt scheduler logs, users’ job level 
Control system: task level logs 
Darshan: records file I/O behavior  
RAS Event: IBM’s records of reliability, availability, and serviceability  
Autoperf: MPI information and limited hardware performance counter.

Mira, 2012 - 2019, a 10 petaFLOPS IBM Blue Gene/Q system at ALCF.
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Characterization — Jobs run time break down
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Observation:  
Overall, about 40% of the tasks spent more 
than half of their machine time on MPI. 

For nearly 95% of the tasks, file I/O took 
less than 20% of their total machine time.

Computing took the most of the machine 
time, e.g., more than 60% of the jobs spent 
at least half of their time on computing.

These findings show that computation is still the most time consuming operation of HPC 
applications.

For each application: Time on communication is 
recorded in Autoperf and can be accumulated.
Time on File I/O is recorded in Darshan.
We then can break down the runtime into I/O, 
communication, and the rest it computing.



Characterization — job size 
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Observation: Multi-task jobs are common and account for a considerable share of machine time.
It suggests that better system-level support for such jobs (e.g., via support for MPI task 
management features and for workflow languages such as Parsl and Swift) may be desirable.

Moreover, tool may be improved to support for dependency-aware task level scheduling, with the 
goal of increased backfilling.
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Characterization — File I/O - file size
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Observation: average size of files read and written on Mira 
is small, hindering efficient  parallel I/O. This observation 
suggests more work is needed to educate users as to the 
benefits of larger files and/or to adapt storage and I/O 
systems to perform better for smaller files.
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We see that from 2016 
onwards the storage system 
is dominated by write 
workloads. In 2018, more 
than twice as many bytes 
were written than read. 



Characterization — File I/O - Library 
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Observation: basic posix is much more widely used than the high-level parallel MPI-IO. 
Although not all POSIX-using applications achieve poor I/O throughput, this observation 
motivates investigations of why higher-level parallel I/O libraries are not more widely used. 

MPI-IO uses posix but Darshan captures posix without 
distinguishing raw posix from MPI-IO. 

We mark tasks that perform MPI-IO based I/O operations 
(reads or writes), for at least one file, as MPI-IO aware. 

If no MPI-IO operations are used to read/write files, we 
mark those tasks/applications as basic posix only.
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Characterization — File I/O - metadata operations 

2015 2016 2017 2018
Year

0.0

0.2

0.4

0.6

0.8

1.0

5a
tiR

 R
I t

iP
e 

Rn
 0

et
a

P26IX 0PII2

For each file read or written, we 
extracted the total time as well as the 
time spent on operations related to 
metadata from Darshan logs. We then 
computed the fraction of time on 
metadata operations for each file. →

Observation: Metadata operations account for a significant portion of total I/O time, due to the 
fact that the majority of files are small.
Where feasible, system administrators should optimize their system configuration for smaller 
files(e.g., small files on Metadata server).



Characterization — fine grained hardware resource (FLOPs)
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) at least 10 auxiliary operations are performed for each floating point 
operation.

TOP500 project uses FLOPS achieved by the LINPACK benchmark 
(high percentage of floating-point operations) as the metric to rank 
supercomputers, the balance of OPS and FLOPS may be a better 
metric to quantify supercomputer capability.

→

Observation: Most applications achieved pretty low (~2% of peak) FLOPS although some power (4% of 
annual hours) users(e.g., HACC) achieved 70% of peak. Possible explanation is that performance aware 
users turned off Autoperf because of its overhead concern.  Counter-intuitively, large applications achieved 
better FLOPS, probably users put more effort into optimizing their application at scale.

↑



Characterization — fine grained hardware resource (RAM)

Observation: When compared with FLOPS achieved, we find that main memory throughput is 
much closer to its peak. This observation reveals how worrisome the “memory wall"(i.e., the 
growing disparity of speed between CPU and memory outside the CPU chip) is for applications 
on HPC systems.
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Characterization — Memory Bytes-per-FLOP
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Observation: The bytes exchanged with other processes per FLOP, and the bytes accessed 
from local memory per FLOP, decrease year over year. This trend is in line with that of 
supercomputers' hardware bytes-per-FLOP capability.

These numbers are informative to the design of supercomputer as the applications' bytes-per-
FLOP characterization reflects the actual demand.  
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Identification — fingerprint 

Based on our analysis and understanding, we next engineer and extract features from 
logs to represent applications in order to study the commonality of HPC applications.  

Fraction of runtime used for inter-process communication(i.e., time spent on MPI routines);
Fraction of runtime used for MPI-IO;
Achieved operations per second;
Achieved floating point operations per second;
Number of processes per node;
Average RAM fetch per CPU cycle; and
Average RAM store per CPU cycle.

All are interpretable features.



Identification — finger print 

Colored by executable name Colored by usernameT-SNE 2D embedding 



Identification —  ml-based identification model

127,585 Autoperf sampled tasks 
Top 20 applications (covered 95%) plus others, 
totals 21 labels  
70% for training and 30% for testing 
XGboost model with max_depth=10 
5-fold cross-validation 
Our testing accuracy is 99.5% (half mistakes are 
the “other” label)

Summary: Tasks can easily be grouped and identified using our interpretable feature 
representation. Statistically, it means that the proposed features can explain the various behaviors 
and characteristics of different applications.



Conclusion and Future work

We characterized applications by co-analyzing 5 production log-sets and draw 
several insightful observations. 
We believe our analysis can help researchers, tool developers, resource 
providers, end users, and funding agencies from difference perspective. 
Based our observations and understanding, we proposed interpretable 
representation (i.e., fingerprint) of application runs. 
A machine learning model using our representation can accurately identify 
application.

Classifying application, based on the run time breakdown and fingerprint, as 
computing-, communication- or I/O intensive for smart scheduling. 
Hardware performance counter ONLY (light weight) based identification.



THANKS!


