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ABSTRACT
Wide area data transfers play an important role in many science
applications but rely on expensive infrastructure that often delivers
disappointing performance in practice. In response, we present
a systematic examination of a large set of data transfer log data
to characterize transfer characteristics, including the nature of
the datasets transferred, achieved throughput, user behavior, and
resource usage. This analysis yields new insights that can help
design better data transfer tools, optimize networking and edge
resources used for transfers, and improve the performance and
experience for end users. Our analysis shows that (i) most of the
datasets as well as individual les transferred are very small; (ii)
data corruption is not negligible for large data transfers; and (iii)
the data transfer nodes utilization is low. Insights gained from our
analysis suggest directions for further analysis.
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1 INTRODUCTION
Many science workows are distributed in nature and rely on net-
works to move data to geographically distributed resources for
analysis, sharing, and storing [16]. Since 1990, ESnet trac has
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grown by a factor of 10 every four years, approximately double
the rate of growth in commercial Internet trac [9]. This growth
in demand has motivated considerable investments in wide area
science networks and in network and data transfer infrastructure
at university campuses and research institutions [23].

Researchers have studied packet-level network traces to get
insights into wide area trac patterns [29, 33] and have used Net-
ow [35] and SNMP [8] data to analyze the impact of bulk data ows
on delay-sensitive ows [15] and to forecast network trac [12].
File transfer application logs such as GridFTP logs have been used
to study the gap between peak and average utilization of network
resources [27] and to model transfer throughput [17]. Here, we use
le transfer application logs to characterize wide area science data
transfers over a four-year period. The resulting insights can help

(1) resource providers optimize the resources used for data trans-
fer;

(2) researchers and tool developers build new (or optimizing the
existing) data transfer protocols and tools;

(3) end users organize their datasets to maximize performance;
and

(4) funding agencies plan investments.
We analyze approximately 40 billion GridFTP command logs

totaling 3.3 exabytes and 4.8 million transfers logs collected by
the Globus transfer service from 2014/01/01 to 2018/01/01. The
results provide a number of insights in terms of utilization of the
data transfer nodes, data corruption in wide area transfers, repeat
transfers, le types transferred, transfer performance, and user
behavior.

The rest of this paper is organized as follows. First, we introduce
(§2) the Globus transfer service and the GridFTP protocol used in
the transfers that we consider here, the logs that we study, and
the methodology that we use to analyze those logs. Next, we ana-
lyze those logs from the perspectives of dataset characteristics and
trends (§3), transfer performance and reliability (§4), user behavior
(§5), and utilization and sharing behaviors of dedicated data trans-
fer nodes (DTNs) (§6). In §7 we review related work, and in §8 we
summarize our conclusions and briey discuss future work.

2 WIDE AREA DATA TRANSFER
End-to-end wide area le transfers are carried out by tools such as
GridFTP, standard FTP, rsync, SCP, Globus transfer [34], BBCP [4],
FDT [10], XDD [30], Aspera[14], and others. GridFTP is used by
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Figure 1: Total bytes transferred by country.

many science domains in many countries (see Figure 1) and has
usage logs available [28]. Moreover, our analysis (details provided
in the subsection below) of the GridFTP usage logs in conjunction
with the ESnet network trac data showed that GridFTP trac
forms a major portion of the ESnet trac and can thus serve as a
representative set for all wide area science data transfers.

2.1 GridFTP
GridFTP, an extension of the standard FTP protocol for high per-
formance, better security, and reliability, is one of the most widely
used protocols for science data transfers. GridFTP was standardized
through the Open Grid Forum, and multiple implementations of
that standard exist. The Globus [2] and dCache [11] implementation
are the most popular.

The Globus implementation of GridFTP reports limited usage
information to a usage analytic server by sending a UDP packet
for each successful transfer (the usage reporting can be disabled by
the user) [28]. Table 1 shows an example record of one transfer (IP
address and hostname are anonymized).

By comparing the statistics from these usage reports with the
ESnet SNMP statistics [8], we determined that the GridFTP trac
accounts for about 65% of incoming trac to and about 42% of outgo-
ing trac from DOE national laboratories in 2017. We note that the
total incoming trac of all DOE laboratories is 114.17 PB, and the
total outgoing trac is 234.20 PB. Since the vast majority of trac
to and from the two Large Hadron Collider (LHC) Tier-1 sites in the
United States—namely, Brookhaven National Laboratory and Fermi
National Accelerator Laboratory [7]—is dCache GridFTP [11] trac
and since we do not have logs from the dCache GridFTP servers,
we exclude these two laboratories from our consideration. For the
rest of the laboratories, the incoming and outgoing trac totals are

Table 1: Fields found in (anonymized) GridFTP logs. Some
elds are omitted because their values are either identical
or empty for all logs.

Key Value Description
num_streams 4 Parallel TCP streams
appname globusonline-fxp Application name
hostname grid-cr2.desy.de Server hostname
start_time 1452637794.757349 POSIX time with µsec
ftp_return_code 226 RFC959 completion code
ip_address 212.189.205.173 Host IP address
num_bytes 976526 Bytes transferred (le size)
end_time 1452637794.877834 POSIX time with µsec
trans_type STOR FTP command (RFC959)
buer_size 174758 TCP buer size

51.49 PB and 87.72 PB, respectively. And the incoming(STOR) and
outgoing(RETR) trac totals of Globus GridFTP servers are 33.36
PB and 36.62 PB, respectively. Thus, GridFTP accounts for 64.79%
of incoming trac and 41.75% of outgoing trac, and GridFTP
transfer characteristics should provide a reasonable approximation
of the overall science data transfer characteristics. Also, we do not
have access to the logs for other data transfer tools that are not
based on Globus GridFTP, such as BBCP [4], FDT [10], XDD [30],
Aspera [14], dCache [11], and SCP based on SSH protocol.

We note that the total trac we obtained from the SNMP logs
were collected at the router interface and therefore includes all
trac to and from the laboratories including the protocol headers.
In contrast, GridFTP bytes were computed at the application level
and thus exclude the protocol headers. The IP addresses in GridFTP
logs were mapped to the national labs by using the information
fromwhois [13]. Arguably, since the laboratories rotate IP addresses
used for their resources from a pool of IP addresses they own, we
may have missed transfers from some of GridFTP servers while
computing the total bytes transferred by the GridFTP servers at
the laboratories. Therefore, the percentage of GridFTP trac we
compute here is the base line; the actual percentage may be higher.

2.2 GridFTP clients
Since the GridFTP protocol is standardized, many dierent imple-
mentations of GridFTP clients (more than the number of server
implementations) exist. Table 2 lists the statistics (from the server
logs) of transfers by the top ve heavily used clients and the total
transfers. libglobus_ftp_client indicates that the client application
was built using this library, but the application does not set the
application name eld while interacting with the server.

From Table 2 we can see that fts_url_copy [5] (the service respon-
sible for globally distributing the majority of the LHC data across
the Worldwide LHC Computing Grid infrastructure) accounts for
almost half of the total bytes, while globusonline-fxp (the Globus
transfer service) manages about 60% of all les. In other words,
fts_url_copy is used primarily for transferring LHC data [5], while
Globus transfer service users are more diverse.
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Table 2: Petabytes and millions of les transferred via GridFTP using dierent tools over the past four years.

Year fts_url_copy libglobus_ftp_client globusonline-fxp globus-url-copy gfal2-util Total
PBytes MFiles PBytes MFiles PBytes MFiles PBytes MFiles PBytes MFiles PBytes MFiles

2014 N/A N/A 111.23 746.59 39.81 1646.10 13.13 816.67 N/A N/A 176.24 3431.78
2015 48.09 77.29 103.21 841.96 52.89 2424.58 19.27 947.78 0.93 6.70 267.33 4435.13
2016 244.46 295.67 105.75 998.96 88.56 3600.78 14.76 850.76 10.03 74.05 466.91 5922.83
2017 342.12 550.57 40.11 885.65 113.45 3901.27 16.89 898.14 45.93 234.65 585.01 6671.79
Total 634.67 923.53 360.3 3,473.16 294.71 11,572.73 64.05 3,513.35 56.89 315.4 1,495.49 20,461.53

2.3 Limitations in GridFTP Usage Logs
Because of privacy considerations [28], the GridFTP toolkit reports
the IP address only of the machine that runs it; in other words, logs
for the STOR command do not have the IP address of the source
endpoint. Similarly there is no IP address of the destination endpoint
for RETR logs. The total number of endpoints (unique IP address)
in the past four years is 63,166. There are 20.5 billion STOR logs
totaling 1.5 exabytes received and 19.4 billion RETR logs totaling
1.8 exabyte transferred. We note that since GridFTP uses unreliable
UDP to collect usage and since users can disable the collection,
the STOR logs and RETR logs are dierent. Considering the large
number of logs even in a short time—on average there are more
than 25,000 STOR and RETR logs per minute in 2017—accurately
matching a STOR log with a RETR log is almost impossible. On the
other hand, Globus transfer (being a hosted service) logs have this
information and many other details about the transfers. Arguably,
these logs still have some limitations; for example, they do not have
the size of the individual les in a transfer. Nevertheless, these logs
are much more comprehensive than the GridFTP logs.

2.4 Globus Transfer Service
The Globus transfer service is a cloud-hosted software-as-a-service
implementation of the logic required to orchestrate le transfers
between pairs of storage systems [3]. A transfer request species,
among other things, a source and destination; the le(s) and/or
directory(s) to be transferred; and (optionally) whether to perform
integrity checking (enabled by default) and/or to encrypt the data
(disabled by default). It provides automatic fault recovery and au-
tomatic tuning of optimization parameters to achieve high perfor-
mance. Globus can transfer data with either the GridFTP or HTTP
protocols; we focus here on GridFTP transfers, since HTTP support
has been added only recently.

The Globus transfer service distinguishes between the two types
of GridFTP server installations: Globus Connect Personal (GCP),
a lightweight single-user GridFTP server designed to be deployed
on personal computers, and Globus Connect Server (GCS), a mul-
tiuser GridFTP server designed to be deployed on high-performance
storage systems that may be accessed by many users concurrently.

Globus transfer logs recorded 4,813,091 transfers from 2014/01/01
to 2018/01/01, totaling 13.1 billion les and 305.8 PB. These trans-
fers involved 41,900 unique endpoints and 71,800 unique source-to-
destination pairs (edges), and 26,100 users. We used the MaxMind IP
geolocation service [25] to obtain approximate endpoint locations.
Figure 2 shows the number in each city worldwide. Table 3 shows
the total bytes and les transferred per year, both within a single

country (nationally) and between countries (internationally). Logs
include the unique name of the source and destination endpoints,
transfer start and end date and time, the user who submitted the
transfer, total bytes, number of les and number of directories, and
number of faults and le integrity failures. The logs also have tun-
able parameters. Therefore, the Globus logs are a good supplement
to GridFTP logs in order to characterize wide area data transfer.

Table 3: Data transferred by Globus: petabytes and millions
of les.

National International Total
Year PBytes MFiles PBytes MFiles PBytes MFiles
2014 41.44 1,865 0.78 26.9 42.32 1,892
2015 53.45 2,763 2.55 94.3 56.39 2,873
2016 90.10 3,929 2.84 110.8 93.60 14,042
2017 109.16 4,162 3.23 94.3 113.50 4,264

2.5 Analysis Framework
Four years of raw GridFTP logs were stored in about 100,000 com-
pressed les in json format, for a total of 1.2 TB. We parsed and
saved these logs in MongoDB for our analysis. The raw Globus
transfer service logs were saved in millions of tiny les in json
format. Since Globus logs is much smaller than GridFTP logs, we
parsed these tiny json les and saved them as one le by using
the Python pickle module (it implements binary protocols for se-
rializing and deserializing a Python object structure). In our anal-
ysis, we used the Python pandas library [26] to load the Globus
transfer logs. We performed all raw data analysis on a Cray Urika-
GX platform (a high-performance big data analytics platform opti-
mized for multiple workows), with the Apache Spark [37] cluster-
computing framework. Anonymized sample data les are available
at https://github.com/ramsesproject/wan-dts-log. The GridFTP logs
soon will be publicly available for researchers for further analysis
via the data-sharing service of Globus.

3 DATASET CHARACTERISTICS
Users’ transfers consist of one or more les. GridFTP clients use one
or more control channel sessions to the GridFTP server(s) (for third-
party server-to-server transfers, clients establish control channel
sessions with both the source and destination servers). The GridFTP
server handles each control channel session independently and thus
does not what les belong to the same transfer. GridFTP logs have
statistics for each individual le, which could be a separate transfer
in itself or part of a bigger multi-le or directory transfer. On the

https://github.com/ramsesproject/wan-dts-log
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Figure 2: Geographical distribution of Globus endpoints, with color coding used to show number per city.

other hand, Globus transfer logs have information at the transfer
(single-le, multi-le, or directory) level including the number of
les and total bytes, but they do not have the size of each le.
Therefore, for multi-le transfers, we know only the average le
size. We note that one cannot correlate the Globus transfer logs
and GridFTP logs in order to determine the size of individual les
in a multi-le transfer because the GridFTP logs do not have the
lename and path information. Instead, we use GridFTP logs to
study the trends at the le level and Globus transfer logs to study
the trends at the transfer level.

3.1 Dataset size
Figure 3 shows the cumulative distribution of dataset size (note that
a dataset consists of one or more les and zero or more directories).
We see in Figure 3 that most transfers are only a few megabytes in
size. The average transfer size is 63.5 GB, but the median is only
6.4 MB. This is not to say that there are no large transfers: 17.6%
are >1 GB in size and furthermore account for 99.9% of all data
transferred; 0.8% are >1 TB in size and account for 80.6% of all
data transferred; and 97.4% of the bytes were transferred by the top
5% of transfers. Surprisingly, the average transfer size is becoming
smaller, especially the smaller transfers (e.g., transfer size smaller
than 1MB). For example, the 20th percentile in 2017 is only about
1% of the 2014 value; the 80th percentile decreased from about 232
bytes in 2014 to about 226 bytes in 2017.

Observation 1. Most of the datasets moved over the wide area are
small. Specically, the 50th, 75th, and 95th quartiles of dataset size
are 6.3 MB, 221.5 MB, and 55.8 GB, respectively. Counterintuitively,
the dataset size has decreased year by year from 2014 to 2017.
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Figure 3: Cumulative distribution of transfer dataset size.

3.2 Number of les
Figure 4 presents the cumulative distribution of the number of les
per dataset in each year.

We see in Figure 4 that many transfers—specically, 2,515,278
(63% of the total)—are involved a single le. However, these transfers
account for a relatively small amount of data: only 10.96% of the
total bytes .

Observation 2. Most of the datasets transferred by the Globus trans-
fer service have only one le. And 17.6% of those datasets (or 11% of
the total) have a le size of ≥ 100 MB, motivating the need for striping
the single-le transfer over multiple servers.

3.3 File size
We know that le size has a considerable inuence on transfer
performance [21]. Globus transfer service logs provide the total
number of les and total bytes for each transfer (dataset), allowing
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Figure 4: Distribution of number of les per dataset.

us to compute the average le size per transfer, as shown in Figure 5.
We see that for most datasets, the average le size is just a few
megabytes, with the median average le size being only 3.44 MB.
However, variance is high, with a standard deviation of 1.6 TB. We
also see that average dataset le size has decreased year by year.
For example, the 20th percentile of average le size in 2017 is only
about 10% of the 2014 value.
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Figure 5: Cumulative distribution of the dataset average le
size.

Figure 6 shows the distribution of size of individual les users
have transferred, extracted from GridFTP logs. Clearly, most of the
les are small. The 50th and 75th percentiles are 216 and 220 bytes,
respectively. Not much dierence is seen in terms of small size les
year by year. However, the dierence in the big les (greater than
1 MB) becomes smaller year by year. The 80th percentile in 2017 is
about a quarter of that in 2014.

We note some surprising ndings. For example, in 2017, users
transferred 1.3 million one-byte les, and around 1 billion les were
less than 1 KB in size. Large transfers also occurred. For example, in
2017, 3,536 transfers were greater than 1 TB; the largest was 454 TB.
However, only four le transfers used the striping [2] feature (i.e.,
used a cluster of nodes at the source and destination to transfer a
large le).

Table 4 lists the average le size by application. The table clearly
shows that ( fts_url_copy) users tend to transfer big les and that
Globus transfer service users are more likely to transfer small les.
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Figure 6: Cumulative distribution of individual le size.

The overall average le shows an increasing trend over the years.
However, the average le size for the individual client applications
does not show such a trend.

Observation 3. The average le size of most datasets transferred is
small (on the order of few megabytes). Majority of individual le size
is less than 1 MB. These results motivate the need for performance
optimizations aimed at small le transfers.

3.4 Directory depth
Figure 7 shows the cumulative distribution function of the directory
depth. Most users organize les using a reasonable subdirectory hi-
erarchy (80% of the datasets have a depth less than 9). The number of
directories in a dataset also inuences the transfer performance [21]
because there is a cost to create folders. This analysis is benecial
for transfer tool designers and performance optimization.
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Figure 7: Cumulative distribution of average directory depth

3.5 File type
Researchers have long adopted or designed specic data formats
that best represent datasets for dierent domains. We investigated
the popularity of le format by looking at the le extension. Figure 8
shows the distribution of le extension in which 6.8% of les have
no extension (marked as no-ext). Surprisingly, the three most com-
monly transferred extensions are images. However, many scientic



HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhengchun Liu, Rajkumar Keimuthu, Ian Foster, and Nageswara S.V. Rao

Table 4: Average le size (in MB) by application and year.

Year fts_url_copy [5] libglobus_ftp_client globusonline-fxp [34] globus-url-copy [2] gfal2-util [6] Overall

2014 – 142.96 27.31 8.86 – 53.89
2015 652.44 133.78 23.89 18.41 32.72 69.18
2016 856.98 193.83 26.28 45.20 252.22 105.28
2017 719.65 153.42 30.78 29.18 182.29 111.81

applications and researchers use a domain-specic data format that
may be suppressed by common le types.
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Figure 8: The 25most-transferred le types: 61.8% of all les.

Observation 4. Image les are the most common le type trans-
ferred, followed by raw text les. Scientic formats such as .h5 (hier-
archical data format) and .nc (NetCDF) are in the top 10.

3.6 Repeated transfers
We are interested in whether the same datasets are transferred re-
peatedly, either from a single source or from dierent sources, since
this information can indicate whether multicast and/or caching
schemes have value. Lacking checksum data for all les, we approx-
imate this sharing phenomenon by computing a ngerprint for each
dataset in the Globus logs by combining le names (exclude path,
sort, concatenate as one string) and total dataset size (individual le
size is not available in Globus logs). This ngerprint is approximate
in two respects: rst, it does not capture equivalence if les are
renamed but contents are not changed; and second, two datasets
with the same le names and size may have dierent content. We
ignored single-le datasets because they are likely to have the sec-
ond mismatching. Nevertheless, we believe that the analysis reveals
useful information.

Having computed ngerprints, we can then count the number
of times that each ngerprint is transferred via Globus. Table 5 lists
the 15 datasets that were transferred most often.

Observation 5. Repeated transfers are not common, less than 7.7%
of the datasets are transferred more than once. When they do occur,
the datasets in question are distributed mostly from one (or a few)
endpoints to multiple destinations (i.e.,Nusr < Ndst ). We also observe
multiple users transferring the same data to the same destination.

Table 5: Dataset sharing behavior for the 15 most-
transferred datasets. Nsrc and Ndst represent the number of
unique source and destination endpoints, respectively; Nusr
and Ntr s denote the number of users and times transferred,
respectively.

Nsrc Ndst Nusr Ntr s Size
1 120 111 131 10.2GB
3 26 24 73 5.0MB
7 8 3 72 14.7GB
1 58 57 64 9.1GB
9 7 6 53 170.4MB
3 12 33 52 3.1GB
1 4 30 51 3.1GB
1 44 43 51 9.3GB
1 47 47 49 8.3GB
1 4 32 42 365.0MB
2 39 39 40 7.4GB
1 5 4 33 3.7GB
2 6 6 31 17.7GB
1 17 17 25 13.3MB
1 4 17 25 0.3MB

4 TRANSFER CHARACTERISTICS
Here we present our analysis of transfer performance, duration,
and failures and the usage of tuning parameters.

4.1 Checksum, encryption, and reliability
Wide area data transfers involve more than just data movement:
both integrity checking (via a checksum) and encryption can be
applied to the data that is transferred.

Because of well-known limitations of the 16-bit TCP check-
sum [32], transfer tools (including GridFTP) support verifying the
integrity of data transferred by using a 32-bit checksum. For ex-
ample, to verify the integrity of the data transferred, the Globus
transfer service rereads the le(s) at the source and at the desti-
nation, computes a checksum at each location, and compares the
two resulting checksums. The importance of these checksums is
revealed by the fact that 27,251 of the 3,312,102 Globus transfers
with integrity checking enabled had at least one checksum error
(i.e., one in 121 transfers had at least one checksum error).

Checksums are applied by default but can be disabled by the user
via a transfer ag. In our dataset, 83.2% of transfers had integrity
checking enabled. Transfer tools also support encrypted data trans-
fer, but this feature is not turned by default in most tools because of
performance overhead. Of the transfers performed by the Globus
transfer service, 2% had encryption enabled.
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Figure 9 presents the average number of integrity checking fail-
ure per terabyte transferred by month. We can see that no clear
burst failures occur in one month besides September 2014. We note
that if a user changes a le during a transfer, this action can be
reported as an integrity failure. We cannot distinguish this from
an actual failure. Data corruption and faults decrease year by year
(Figure 10a,10b).

Figure 10b shows the average number of faults per terabyte trans-
ferred. Faults include network faults, data transfer node failures,
and le integrity check failures. Overall, the service is becoming
increasingly reliable.
Observation 6. At least one checksum failure occurs per 1.26 TB.
Although integrity checking adds extra load to storage and CPU on
the source and destination endpoints, it is worthwhile. The failures
are decreasing year by year. Only 1.9% of transfers used encryption.

4.2 Transfer direction
As mentioned in subsection 2.4, Globus Connect Personal (GCP) is
a lightweight single-user GridFTP server designed to be deployed
on personal computers, and Globus Connect Server (GCS), is a mul-
tiuser GridFTP server designed to be deployed on high-performance
storage systems that may be accessed by many users concurrently.
Figure 11 shows the trend in terms of number of transfers and bytes
transferred for server-to-server (GCS→GCS) transfers, downloads
from servers to personal machines (GCS→GCP), uploads from per-
sonal machines to servers (GCP→GCS), and personal machines to
personal machines (GCP→GCP). One can see that server-to-server
transfers are dominant in terms of bytes transferred and that down-
loads are equivalent to server-to-server transfers in terms of the
number of transfers.

Table 6: Transfer characteristics of dierent source and des-
tination types: number of transfers, median performance,
median size, and average le size (inMB) per transfer (Favд ).

Median
Year Type 1000s Mbps MB Favд

2014

GCS→GCS 168.77 46.62 104.86 20.97
GCS→GCP 199.44 5.58 3.43 3.31
GCP→GCS 61.05 2.93 6.95 1.12
GCP→GCP 1.54 10.68 2,061.18 4.78

2015

GCS→GCS 513.05 30.16 15.40 7.93
GCS→GCP 678.56 4.92 3.44 3.39
GCP→GCS 109.33 3.87 5.06 1.05
GCP→GCP 2.88 186.52 38,091.87 8.17

2016

GCS→GCS 488.95 27.24 35.51 2.58
GCS→GCP 494.89 13.55 13.00 3.72
GCP→GCS 156.70 4.95 9.54 1.37
GCP→GCP 6.15 26.92 530.29 9.59

2017

GCS→GCS 1,019.14 14.50 7.68 1.64
GCS→GCP 691.56 7.95 8.15 3.55
GCP→GCS 189.48 0.48 0.45 0.07
GCP→GCP 5.24 4.11 24.95 0.94

Observation 7. Transfers involve many more downloads (GCS to
GCP) than uploads (GCP to GCS).

4.3 Performance
Boxplots in Figure 12 show the trend of per dataset transfer perfor-
mance by the type of source and destination endpoints. No consis-
tent trend across dierent years is observed for several reasons.

• As shown in Table 6 and Figure 11, the transfer size and
average le size change inconsistently, and these two char-
acteristics have a big inuence on transfer performance [21].

• The number of active users increases year by year but with
much variance.

• The number of GCPs increases year by year. The perfor-
mance capability and network environment of these PC-
based endpoints are not stable and vary a lot from one to
another.

• The number of active GCS endpoints are 3,095, 2,166, 1,773,
and 1,883, respectively, for the years 2014 to 2017. The num-
ber of transfers increases consistently, meaning that the load
of GCS changes year by year inconsistently.

Figure 13 shows the distribution of per le transfer performance.
The majority of the les achieve about 64 Mbps throughput, and
the overall transfer performance has not changed much over time.

Observation 8. Although some server-to-server transfers achieve
high performance (dozens of Gbps), most transfer throughput is low.
For example, the median throughput is only tens of Mbps. There is no
clear increasing trend in terms of transfer performance over time.

4.4 Duration
The transfer time distribution and trend are shown in Figure 14.
More than half of all the transfers nished in less than 10 seconds.
The longest-running transfer to date ran for six months; this was a
large transfer from one tape archive to another. Of all the transfers,
0.004% ran for more than a month, 0.09% for more than a week,
1.2% for more than a day, and 8% for more than an hour.

4.5 Transfer parameters
Regular FTP sends a le over a single TCP stream; with Paral-
lelism, a le’s data blocks are distributed over a specied number
(P ) of TCP streams. All TCP streams have the same source and
destination GridFTP server process. Large les over high-latency
links can benet from higher parallelism, since the multiple streams
devoted to a single le can in eect increase the TCP window size
and in addition can provide increased resilience to packet losses.
Beside P , the Globus transfer service has two other application-level
tuning parameters: Concurrency C and Pipelining D.

Concurrency involves starting C independent GridFTP pro-
cesses at the source and destination le systems. Each of the C
resulting process pairs can then work on the transfer of a separate
le, which provides for concurrency at the le system I/O, CPU core,
data transfer nodes (each transfer can involve multiple servers),
and network levels. In general, concurrency is good for multi-le
transfers because it can drive more lesystem processes, CPU cores,
and even machine nodes, in addition to opening more network data
streams. Since striping feature is not enabled in Globus, single le
transfers cannot have C > 1.

Pipelining, D, speeds transfers involving many small les by
dispatching up to D FTP commands over the same control channel,
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Figure 9: Monthly average number of integrity check failures per TB transferred.
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Figure 10: Annual average number of integrity check fail-
ures and faults per TB transferred.
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Figure 11: Transfer numbers and volume vs. endpoint type.

back to back, without waiting for the rst command’s response. This
method reduces latency and keeps the GridFTP server constantly
busy; it is never idle waiting for the next command.

In general, transfer performance is improved by increased P
when sending a large le over high-latency (and lossy) links and
by increased C when transferring many les. When sending many
large les, increased P and C can both be benecial [2, 24, 36]. The
Globus transfer service thus sets C and P parameters according to
simple heuristics based on the number and sizes of les in a request,
subject to site-specic limits and policies specied by endpoint
administrators.

Figure 15 shows the distribution of parameters values used for
transfers from the Globus transfer service. More than 60% of trans-
fers used C = 1 because more than half of the Globus transfers
are single le transfers (Figure 4). Most users let Globus choose
the proper parameters. But the best choice is not necessarily the
one that maximizes the performance of a single transfer; other
considerations can also come into play, such as the need to moder-
ate bandwidth usage by individual ows for purposes of fairness
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Figure 12: Distribution of per dataset transfer performance
trend extracted from Globus logs.
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Figure 13: Cumulative distribution of per le transfer per-
formance extracted from GridFTP logs.

and/or ow prioritization, a desire to manage performance-energy
tradeos [1], or the desire to orchestrate transfers from/to the same
data transfer nodes(DTN) to reduce resource contention cost [22].

In GridFTP logs, 94.6% of the transfers by globus-url-copy use the
default 1 TCP stream (i.e., P = 1). Similarly, 93.4% of the fts_url_copy
transfers also use 1 TCP stream. gfal2-util almost never uses more
than 1 TCP stream.
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Figure 14: Transfer duration.
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Figure 15: Parameter values used in Globus transfers.

Observation 9. Most users do not manually tune the transfer pa-
rameters (e.g., 94.6% of the transfers use P = 1). Transfer tools should
be smart enough to choose the best parameters for each transfer in
order to achieve maximum performance.

5 USER BEHAVIORS
Users who perform at least one transfer during a given year are
considered active. The number of active users from 2014 to 2017
was 4,602, 6,985, 10,234, and 13,321, respectively.

5.1 Transfer frequency
User behavior is hard to predict, but the statistics can help users
better plan their own transfer. The statistics about user behavior
can also help resource providers schedule maintenance and plan
resource allocation. Figure 16 shows user transfer behavior by day
of week.
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Figure 16: Average number of transfers and bytes trans-
ferred, by day of week.

The gure shows a clear drop in usage on weekends in terms of
both total bytes and number of transfers.

5.2 Transfer volume
Figure 17 shows the distribution of bytes transferred by percentage
of users.
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Figure 17: Distribution of bytes transferred per user.

The gure shows most users transferred dozens of gigabytes.
The few users who transferred hundreds of terabytes accounted for
the majority of total bytes moved. Figure 18 shows the cumulative
distribution of bytes moved by percentage of active users in each
year.
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Figure 18: Cumulative distribution of the percent of annual
active users versus the total bytes transferred.

Observation 10. Of all the bytes transferred, 80% are by just 3% of
all users; 10% of the users transferred 95% of the data.

5.3 Degree of connection
Similarly to a person in the social network, we dene an endpoint’s
degree of connection as the number of unique endpoints with which
it has engaged in one or more transfers. The degree is a measure of
the endpoint’s popularity.

We compute the degree of each endpoint annually. In 2017, 81%
of the endpoints connected to only one other endpoint, 11% to
two other endpoints, and only 8% to three or more. This is not
to say that there is no widely connected endpoints. For example,
the Blue Waters DTN at the National Center for Supercomputing
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Applications had a degree of connection of 855, 706, and 2,092 for
2016, 2017, and 2014–2017, respectively.

Figure 19 shows the degree of connection for the 100 most-
connected endpoints for each of the four years. Clearly, some end-
points are highly connected, and the degree of connection is in-
creasing over time.

5.4 User access to endpoints
The number of active users in Globus transfer service has increased
steadily year by year, with 4,652, 7,025, 10,313, and 13,433 active
users annually from 2014 to 2017. Here we analyze the number of
endpoints accessed by individual users, in order to understand the
trend of data sharing and collaboration.

As shown in Figure 20, slightly more than half of the users ac-
cessed two or fewer endpoints. Specically, only 41.76% of the users
accessed three or more endpoints; and 1.5% of the users accessed
only one endpoint, which means that they used the Globus transfer
service to copy les locally in a re-and-forget manner. Specically,
we found 71,000 transfers for which the source and destination
were the same. These transfers, totaling 17 PB, were done by 2,868
users over 2,090 unique endpoints; 0.34% (90 users) users accessed
more than 20 endpoints.

6 ENDPOINT CHARACTERISTICS
We call an endpoint active in a given year if there is at least one trans-
fer to/from this given endpoint. The number of active endpoints
in 2014 to 2017 was 8,620, 10,478, 13,482, and 16,826, respectively.
Among them, 5,820, 8,592, 12,008, and 15,251 were GCP, respec-
tively; and 2,800, 1,887, 1,474, and 1,575 were GCS, respectively.

6.1 Degree of sharing
Here we study the number of users who have access to an endpoint.
This analysis describes how the endpoints are shared. We focus on
GCS endpoints because a GCP endpoints can be accessed only by
the user who set it up. For a given endpoint, the number of users
accessed represent the degree of sharing. Figure 21 presents the
number of users per endpoint for the top 1000 most-shared GCS
endpoints (the 100th endpoint has 4 users).

We observe a descending linear slope in the log-log plot in Fig-
ure 21, suggesting that the edge (user to endpoint) degree distribu-
tion of vertices (endpoint) follows a power law, which is common
in many real-world networks [19]. Lim et al. [20] observed a similar
distribution for the number of les generated by a user in a dierent
project on a petascale le system.
Observation 11. The degree distribution of the number of users per
endpoint follows a power-law distribution, similar to other real-world
social network graphs.

6.2 Utilization
DTNs are compute systems dedicated for wide area data transfers
in distributed science environments. DTNs typically have GCS
deployed on them. In this section, we study the utilization of those
DTNs. For each minute in 2017, we mark a given DTN as active if
there is at least one transfer over the DTN; otherwise we marked
it as idle. We found that, on average, DTNs are completely idle
(i.e., there is no transfers) for 94.3% of the time. Figure 22 shows

the cumulative distribution of the time that DTNs are active. The
percentage of active time clearly is low. For example, 80% of the
endpoints are active less than 6% of the time.

However, some endpoints are heavily used. For the top 100 most
heavily used endpoints, Figure 23a shows the percentge of time
that at least one transfer was happening over the endpoints. To
investigate how busy the endpoint is when there is at least one
transfer, we assume that the endpoint resource utilization is 100%
when it gets the maximum aggregated throughput (incoming and
outgoing), and we compute the utilization at a given instant as the
ratio of the aggregate throughput at the instant to the maximum
aggregate throughput observed at the endpoint in the entire year.
Figure 23b shows the dierent percentile values of the utilization of
the top 100 most heavily used endpoints. Clearly, their utilization
is very low.

Usersmay use other data transfer tools, such as BBCP [4], FDT [10],
XDD [30], or Aspera [14], whichmay addmore utilization.We there-
fore used port scanning to determine the installation of other data
transfer tools and found that less than 1% of the endpoints had
other tools installed. This percentage implies that the utilization
reported here is accurate for 99% of the endpoints.

Observation 12. DTN utilization is surprisingly low. Since the DTN
requirement is high for high-throughput DTNs, some good topics for
research would be the use of these computing resource (1) for other
purposes; (2) for complex encoding to deal with data corruption and;
(3) to compress data to reduce the network bandwidth consumption.

6.3 Edge
Figure 24 shows the number of transfers per edge (between source
and destination, unidirectional). Most edges have few transfers:
indeed, a quarter of all edges are involved in just one transfer.
This sparse communication makes performance analysis for such
transfers hard.

7 RELATEDWORK
We previously used Globus logs to explain performance of wide
area data transfers [21]. That work focused on explaining the per-
formance of individual transfers. Here, because we analyze the
whole logs in aggregate, our analysis provides deeper insights into
the temporal evolution of scientic datasets transferred over wide
area networks.

As we have seen in this analysis, sometimes truth hidden in the
data is counterintuitive. Rishi et al. [31] studied packet size distribu-
tions in Internet trac and observed that the trimodal packet sizes
are around 40, 576, and 1500 Bytes—a change from commonwisdom.
Lan et al. [18] looked at the Internet trac data recorded from two
dierent operational networks and found that a small percentage
of ows consume most network bandwidth. These observations are
important for trac monitoring and modeling purposes.

Lim et al. [20] analyzed 500 days of metadata snapshots of the Spi-
der parallel le system (PFS) at the Oak Ridge Leadership Comput-
ing Facility to characterize user behavior and data-sharing trends
on the petascale le system. Their analysis provided deep insights
into the temporal evolution of a heavily used petascale PFS of a
leading supercomputing center. Our work provides a somewhat
similar analysis for wide area data transfers.
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Figure 19: Degree of connection for the 100 most-connected endpoints.
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Figure 20: Cumulative distribution of the number of end-
points users have accessed.
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Figure 21: Number of users per endpoint. The log-scaled plot
(bottom) shows that the distribution follows a power law.

8 CONCLUSIONS
To systematically characterize the wide area transfers for a general
understanding, we analyzed 20.5 billion GridFTP STOR command
logs totaling 1.5 exabytes received and 19.4 billion GridFTP RETR
command logs totaling 1.8 exabytes transmitted, by a total of 63,166
GridFTP servers distributed all over the world in the past four years.
To address the limitations in GridFTP logs, we supplemented our
analysis with 4.8 million transfers logs collected by the Globus
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Figure 22: Cumulative distribution of idle time percentage;
80% of endpoints were active less than 6% of the time.

Top 100 most heavily used endpoints0

20

40

60

80

Pe
rc

en
ta

ge
 o

f t
im

e 
ac

tiv
e 

(%
)

(a) Active time of endpoints.

Top 100 most heavily used endpoints0
5

10
15
20
25
30
35
40
45

Ut
iliz

at
io

n 
(%

)

95th percentile
75th percentile

50th percentile
25th percentile

(b) Endpoint utilization.

Figure 23: Utilization of 100 most heavily used endpoints.

transfer service from 2014/01/01 to 2018/01/01. These transfers,
totaling 13.1 billion les and 305.8 PB, involved 41,900 unique end-
points, 71,800 unique source-to-destination pairs, and 26,100 users.
To the best of our knowledge, this is the rst study of its kind to sys-
tematically characterize the wide area transfers from real logs. Our
analysis revealed a number of insights in terms of the utilization
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Figure 24: Cumulative distribution of number of transfers
over the top most heavily used edges.

of the data transfer nodes, data corruption in wide area transfers,
repeat transfers, le types transferred, transfer performance, and
user behavior. We believe our analysis can help researchers, tool
developers, resource providers, end users, and funding agencies
from dierent perspectives.
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