
Building a Wide-Area File Transfer Performance
Predictor: An Empirical Study

Zhengchun Liu2,1, Rajkumar Kettimuthu1,2, Prasanna Balaprakash1, Nageswara
S.V. Rao3, and Ian Foster1,2

1 Argonne National Laboratory, 9700 Cass Ave., Lemont, IL 60439, USA
2 University of Chicago, Chicago, IL 60637, USA

3 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
{zhengchun.liu, kettimut, pbalapra, foster}@anl.gov, raons@ornl.gov

Abstract. Wide-area data transfer is central to geographically distributed
scientific workflows. Faster delivery of data is important for these workflows.
Predictability is equally (or even more) important. With the goal of provid-
ing a reasonably accurate estimate of data transfer time to improve resource
allocation & scheduling for workflows and enable end-to-end data transfer
optimization, we apply machine learning methods to develop predictive mod-
els for data transfer times over a variety of wide area networks. To build
and evaluate these models, we use 201,388 transfers, involving 759 million
files totaling 9 PB transferred, over 115 heavily used source-destination pairs
(“edges”) between 135 unique endpoints. We evaluate the models for different
retraining frequencies and different window size of history data. In the best
case, the resulting models have a median prediction error of ≤21% for 50% of
the edges, and ≤32% for 75% of the edges. We present a detailed analysis of
these results that provides insights into the cause of some of the high errors.
We envision that the performance predictor will be informative for schedul-
ing geo-distributed workflows. The insights also suggest obvious directions for
both further analysis and transfer service optimization.

1 Introduction

With increasing data generation rates, wide-area data transfer is becoming inevitable
for many science communities [1–3]. Wide-area data transfer is an important aspect
of distributed science. An accurate estimation of data transfer time will significantly
help both resource selection and task scheduling of geographically distributed work-
flows (e.g., one the cloud) [4–8]. Typically, wide-area transfers involve a number of
shared resources including the storage systems and data transfer nodes (DTNs) [9]
at both the source and destination, and the multi-domain network in between. Even
for transfers between a user’s machine and an experimental, analysis, or archival fa-
cility, the resources at the facility and the network connection are shared. Because
of the fluctuation in the load on various shared resources, the data transfer rates
can fluctuate significantly [10]. A number of attempts have been made to model and
predict wide-area data transfer performance [11–17]. Many of these studies use a
data-driven approach; some have used analytical models of individual components to
predict transfer performance in dedicated environments [18]. Building an end-to-end
model using the analytical models of individual components in a shared environments
is challenging because the behavior of individual components can vary in an unpre-
dictable fashion, due to competing load.



2 Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster

While a variety of tools are used for high-performance wide-area data transfers,
such as GridFTP [19], bbcp [20], FDT [21], and XDD [22], the features that impact
transfer performance are similar in most cases (e.g., number of TCP connections,
number of network and disk I/O threads or processes, data transfer size, number of
files). A data-driven model built using the data obtained from one high-speed data
transfer tool should be generally applicable for all high-performance wide-area data
transfers.

In this work, we apply a number of machine learning algorithms to develop models
that can be used to predict wide-area data transfer times. We use the logs from the
Globus transfer service [23] for our study. While this service orchestrates GridFTP
or HTTP transfers between storage systems, we focus here on GridFTP transfers.
GridFTP extends FTP to provide features such as high-speed, fault tolerance, and
strong security. A number of features that are known to impact the transfer times,
such as number of TCP connections, number of network and disk I/O threads, transfer
size, and number of files are used to build machine-learning models.

The rest of this paper is organized as follows. First, in §2, we present background
and motivation for building the predictor as well as the data we used in this paper.
Next, in §3 we introduce the features we used to build the machine learning based
predictor. A brief introduction of the machine learning algorithms as well as their
the hyperparameters tuning, and model selection are given in §4. Then, we describe
experiments, analyze results, and study feature importance in §5. Further insights into
prediction errors are given in §6. Finally, we review related work in §7, and summarize
our conclusions and briefly discuss future work in §8.

2 Background, motivation, and data

2.1 Background

To understand the characteristics of wide-area data transfer throughput, we analyzed
the Globus transfer logs of the 1,000 source-destination pairs (“edges”) that trans-
ferred the most bytes. Figure 1 shows the relative standard deviation, also known as
coefficient of variation—a measure of variability relative to the mean—of the through-
put for these edges. We observe a large variation in throughput for many of these
edges, which reiterates the fact that predicting wide-area transfer performance is a
challenging task.

In previous work [18], we characterized the features that impact wide-area data
transfers and used linear and nonlinear models to validate the explainability of the
features. Our goal in that work was to explain the performance of wide-area transfers
through interpretable models. Here, we focus on applying machine learning algorithms
to predict transfer performance.

2.2 Motivation

The primary motivation of this work is to provide a reasonably accurate estimate
of data transfer time so that workflow management systems (e.g., pegasus [24]) can
allocate appropriate resources for distributed science workflows and schedule the tasks
more efficiently. In general, an accurate data transfer performance prediction model
can be useful for many purposes, including the following:



A Wide-Area File Transfer Performance Predictor 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Relative standard deviation of throughput

101

102

103

Nu
m

be
r o

f e
dg

es
 (l

og
10

)

Fig. 1: Relative standard deviation (standard deviation divided by the mean) for the
top 1,000 heavily used edges in Globus

1. It can be used for resource selection (when computing resource are available on
multiple HPC centers or regions of cloud), and scheduling (e.g., reserve computing
resource beforehand) of distributed workflows [4, 5].

2. Choosing appropriate tunable parameters of data transfer tools plays a crucial role
in data transfer time [3, 25, 26]. A model that captures the influence of tunable
parameters under different circumstances can be used to identify optimal tunable
parameters of the transfer tools under a given condition (i.e., dataset character-
istics and external load), e.g., by allowing for exhaustive search over parameters
without adding real load to the infrastructure [26–29].

3. They can be used to improve user satisfaction, by setting expectations at the start
of the transfer. Users can also plan their job accordingly based on the prediction.

2.3 Data

For this study, we use Globus transfer logs from 2016/01/01 to 12/31/2017, which
contains 2.7 million records. We discard transfers with elapsed time shorter than 10
seconds, because we do not see it as useful to predict these small transfers in practice;
transfers that were canceled by users; and transfers from Globus tutorial endpoints,
leaving 0.9 million transfers, which involve 24,951 unique source-destination pairs. The
top 10% of the 24,951 edges contribute 83.6% of the transfers. Only 607 edges have
more than 100 transfers. Figure 2 shows the distribution of the number of transfers
over edges. We consider edges with more than 150 transfers as heavily used.

To evaluate the models for online use, we set aside transfers from May 1, 2017
onwards for testing, and use only the transfers before this date for tuning the hy-
perparameters of machine learning algorithms, model selection, and training selected
machine learning models: 201,388 transfers over 115 heavily used source destination
pairs (involving 135 unique endpoints), totaling 9 PB in 759 million files. In terms of
round trip time (RTT, a key difference among edges) between source and destination
endpoints, the 50th and 75th percentile of these 115 edges are 2.46ms and 18.63ms
respectively, compared with 2.37ms and 19.40ms for all edges, respectively. We believe
that these 115 edges are sufficiently representative to capture the potential behavior
of our models on other edges that are heavily used but lack sufficient transfers before
and after May 1, 2017 to be considered in this paper.



4 Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster

0 500 1000 1500 2000 2500 3000
Number of transfers

101

102

103

104

105

Nu
m

be
r o

f e
dg

es
 (l

og
10

)

Fig. 2: Distribution of the number of transfer over edges.

3 Transfer features

Feature engineering is a key data preparation and processing step in machine learning.
Often it is a manual process of transforming raw features into derived features that
better represent the problem structure to the predictive models, resulting in improved
model accuracy on testing data. This process involves constructing new features from
raw features by combining or splitting existing features into new ones, often by the
application of domain knowledge.

In our previous work [18], we employed 16 features for explaining wide-area data
transfer performance, in three groups: tunable parameters specified by users, transfer
characteristics that describe file properties, and competing load. We extracted the
features in the first two groups directly from Globus transfer logs, but constructed
those in the third group to capture resource load conditions on endpoints. Specifically,
we created profiles for endpoint CPU load and network interface card load via feature
engineering and showed that these profiles can be used to explain a large fraction of
transfer performance in many cases. Besides the number of transfer faults, which is
known to us only after the transfer, the other 15 features can be used for predicting
transfer performance.

Here we expand this set to include five more features: four representing the wide-
area network outbound and inbound bandwidth contention for a transfer at the trans-
fer’s source and destination institutions, and one representing pipeline depth, a tun-
able parameter that Globus uses to improve the performance of transfers consisting
of many small files. Table 1 lists all the features (lower 20 terms) and some of the
notation (the first seven terms) used in this article.

In previous work [18], we took into consideration competing transfers at a transfer’s
source and destination endpoints. But overlapping transfers involving other endpoints
at the same source/destination institution may also compete with a given transfer for
resources in the last mile. In an attempt to capture this contention, we used the Max-
Mind IP geolocation service [30] to obtain the approximate location of endpoints and
used that information to estimate competing load based on proximity. We consid-
ered the throughput of simultaneous transfers within eight kilometers as competing
transfers to the transfer of interest.

We introduce four features to quantify the wide-area network contention from the
same institution. Assume that there is a transfer k from institution Isrc to institution



A Wide-Area File Transfer Performance Predictor 5

Table 1: Notation used in this article. The lower 20 terms are used as features in our
machine learning algorithms, of which the first 15 are from Liu et al. [18] and the
remaining five are developed in this paper.

srck Source endpoint of transfer k.
dstk Destination endpoint of transfer k.
I src
k Institution of the source endpoint of transfer k.

I dst
k Institution of the destination endpoint of transfer k.
Tsk Start time of transfer k.
Tek End time of transfer k.
Rk Average transfer rate of transfer k.

Ksin Contending incoming transfer rate on srck.
Ksout Contending outgoing transfer rate on srck.

Kdin Contending incoming transfer rate on dstk.

Kdout Contending outgoing transfer rate on dstk.
C Concurrency: Number of GridFTP processes.
P Parallelism: Number of TCP channels per process.
Ssin Number of incoming TCP streams on srck.
Ssout Number of outgoing TCP streams on srck.

Sdin Number of incoming TCP streams on dstk.

Sdout Number of outgoing TCP streams on dstk.
Gsrc GridFTP instance count on srck.

Gdst GridFTP instance count on dstk.
Nf Number of files transferred.
Nd Number of directories transferred.
Nb Total number of bytes transferred.

Qsin Contending incoming transfer rate on I src
k .

Qsout Contending outgoing transfer rate on I src
k .

Qdin Contending incoming transfer rate on I dst
k .

Qdout Contending outgoing transfer rate on I dst
k .

D Pipeline depth.

Idst. The Globus contending transfer rate for a transfer k at that transfer’s source
institution (Isrc) and destination institution (Idst) endpoints is as follows:

Qx∈{sout,sin,dout,din}(k) =
∑

i∈Ax

O(i, k)

Tek − Tsk
Ri, (1)

where sout and sin denote outgoing and incoming at institution Isrc, respectively,
and dout and din represent outgoing and incoming at institution Idst, respectively;
Ax is the set of transfers (excluding k) with Isrc as source, when x = sout ; Isrc as
destination, when x = sin; Idst as source, when x = dout ; and Idst as destination
when x = din; and Ri is the throughput of transfer i, and O(i, k) is the overlap time
for the two transfers:

O(i, k) = max (0, min(Tei,Tek)−max(Tsi,Tsk)) .

Pipelining, D, speeds transfers involving many small files by dispatching up to D
FTP commands over the same control channel, back to back, without waiting for the
first command’s response [3]. This method reduces latency and keeps the GridFTP
server constantly busy since it is never idle waiting for the next command.



6 Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster

Although we performed this work using Globus data, we believe that our methods
and conclusions are applicable to all wide-area data transfers. The reason is that
the features we used (number of TCP connections, number of network and disk I/O
threads / processes, data transfer size, number of files, competing load) are generic
features that impact the performance of any wide-area data transfer, irrespective
of the tool employed. The pipeline feature is applicable to all tools that involve a
command response protocol. The data used in this paper are publicly available at
https://github.com/ramsesproject/wide-area-data-transfer-logs.

4 Machine-learning-based modeling

We use supervised learning, a class of machine learning (ML) approach, to model
throughput as a function of input features. The success of the supervised-learning ap-
proach depends on several factors such as identifying appropriate data-preprocessing
techniques, selecting the best supervised-learning algorithm that performs well for the
given training data, and tuning the algorithm’s hyperparameters. Figure 3 illustrates
the process we use to obtain the best model for each edge. We detail these steps next.

transfers between 
01/01/2016 and 
05/01/2017

(
Training 
dataset 

Validation 
dataset

Hyper parameter 
search

Historical 
transfers

Model 
selection

The best model

Machine learning 
algorithms

Optimum hyper 
parameters

transfers after 
05/01/2017 Testing 

dataset

Deployment History 
window

Retrain 
frequency

Fig. 3: Model selection process

4.1 Preprocessing

Many ML algorithms are more effective if the features have the same scale and the
training data set is standardized. We apply scale transformation, which involves com-
puting the standard deviation for each feature and dividing each value in that feature
by that standard deviation. We also observed that the variance of the measured
throughput is large for several endpoints. Since several ML algorithms minimize the
mean squared error on the training set, if we use raw throughput, then the model
fitting is biased towards large throughputs values but not the small ones. To avoid
this, we applied logarithm transformation for the throughput.

https://github.com/ramsesproject/wide-area-data-transfer-logs


A Wide-Area File Transfer Performance Predictor 7

4.2 Supervised learning algorithms

Many supervised learning algorithms exist in the ML literature. They can be cate-
gorized as regularization, instance-based, kernel-based, bagging, and boosting algo-
rithms. Typically, the best algorithmic choice depends on the type of relationship
between the input features and the throughput. Instead of focusing on a single ML
algorithm for our study, we selected a set of ML algorithms of increasing complex-
ity. We start from linear regression, the most basic ML algorithm. We adopt ridge
regression that addresses overfitting problem of linear regression using regularization.
Ensemble methods build a number of simple models and combine them to obtain
better predictive performance and they are shown to obtain state-of-the-art results in
a wide range of predictive modeling problems [31]. Two families of ensemble methods
are (1) bagging that build several simple models independently and then average their
predictions—Bagging, ExtraTrees, and Random Forest algorithms are selected from
this class; (2) boosting that build simple models incrementally to decrease the train-
ing error in a sequential way—GradientBoosting, AdaBoost, and eXtreme Gradient
Boosting algorithms are selected from this class. We also evaluated support vector
machines as a candidate for a kernel-based regression method, but found that it did
not perform well and so we omitted it from the study. In the rest of the section, we
provide a high-level overview of the algorithms considered in our study.

Multivariate linear regression tries to find h(x) by fitting a linear equation

h(x) = c +
∑M

i=1 α
i × xi, where c is a constant and αi is the coefficient of the input

xi. Appropriate values of (c, α) are obtained by the method of least-squares, which
minimizes the sum of the squared deviations between the yi and h(xi) in D.

Ridge regression (RR) [32] is a regularization algorithm that addresses the over-
fitting problem faced by linear regression. Overfitting occurs when the model becomes
sensitive to even small variations in the training set output and lose prediction ac-
curacy on the testing and validation set. To avoid this problem, RR, in addition to
minimizing the error between predicted and actual observations, penalizes the objec-
tive by a factor α of the input coefficients. Here, α ≥ 0 is a user-defined parameter
that controls the tradeoff between minimizing error and minimizing sum of square of
coefficients.

Bagging trees (BR) [33] builds nt decision trees. Each decision tree is obtained
on a random subsample of the original dataset by recursively splitting the multi-
dimensional input space into a number of hyper-rectangles such that inputs with
similar outputs fall within the same rectangle. Given a new point x∗ to predict, each
tree follows if-else rule and returns the constant value at the leaf as the predicted
value. The mean of all the predicted values will be returned as the final prediction
value.

Random forest (RFR) [34,35] is also a bagging approach that builds nt decision
trees similar to BR but at each split, RFR considers only a random subset of inputs
and selects the best one for split based on mean squared error.

Extremely randomized trees (ETR) [36] differs from RFR in the way in which
the splits are computed. As in RFR, a random subset of inputs is considered for the
split, but instead of looking for the best mean squared error, the values are drawn at
random for input and the best of these randomly-generated values is picked as the
splitting rule.

Adaptive boost regressor (ABR) [37] is a tree-based boosting approach that
differs from tree-based bagging in the way it builds the trees and aggregates the



8 Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster

results: nt trees are built sequentially such that the mth tree is adjusted to correct
the prediction error of the (m − 1)th tree. Each sample point in the training set is
assigned a weight proportional to the current error on that point so that subsequent
tree focuses on points with relatively higher training errors. Given a new test point
x∗, each tree calculates a predicted value. These predicted values are weighted by
each tree’s weight, and their sum gives the prediction for the ensemble model.

Gradient boosting trees (GBR) [38] are similar to ABR, in which nt trees are
built sequentially. The key difference is that GBR tries to minimize squared error
loss function by using the residuals of the (m− 1)th model as the negative gradient.
It generates a new model at the mth iteration by adding the mth tree that fits the
negative gradient to the (m− 1)th model.

eXtreme Gradient Boosting (XGB) [39] is a high-performing gradient boosting
optimized software framework and implementation, which is used widely by data
scientists to achieve state-of-the-art results on many ML challenges such as Kaggle
and KDDCup. XGB is similar to GBR but the former adopts a more regularized model
formalization than the latter which gives it better performance. Moreover, XGB uses
several novel algorithmic optimizations—a novel approximate tree learning algorithm,
an efficient procedure to handle training point weights in approximate tree learning,
and system level optimization—out-of-core computation to process data that is too
large to fit in main memory and cache-aware learning to improve speed and scalability.

4.3 Hyperparameter tuning

Many ML algorithms require user-defined values for hyperparameters that strongly
influence the performance of the algorithm. These parameters include not only cat-
egorical but also numerical parameters such as α, number of trees, and maximum
tree depth. Choosing appropriate parameter settings can have a significant impact on
the performance. Unfortunately, finding performance-optimizing parameter settings
is data dependent and difficult task.

This task has traditionally been tackled by hand, using a trial-and-error process
and/or grid search. In the past few years, new algorithmic methods have begun to
emerge to address these serious issues. In particular, a random search algorithm has
shown to be more effective than grid search for tuning the hyperparameters of ML
algorithms [40]. We consider a random search over the feasible domain D without
replacement. This consists in sampling ns random parameter configurations for a
given supervised learning algorithm, evaluate each of them on the training set by
cross validation, and selecting the best according to a user-defined metric (e.g., the
median absolute percentage error).

We tuned the hyperparameters for each learning algorithm by using a random
search that samples ns = 200 configurations and selected the best based on cross val-
idation on the training data. The parameters of each algorithm considered for tuning
are as follows. XGB: The number of boosted trees to fit, the maximum tree depth for
base learners, the minimum loss reduction required to make a further partition on a
leaf node of the tree, the subsample ratio of the training instance, and the subsample
ratio of columns when constructing each tree. BR: The number of base estimators
in the ensemble, the number of samples to train each base estimator, and whether
samples are drawn with replacement. GBR: The number of boosting stages to per-
form, the maximum depth of the individual regression estimators, and the learning
rate. RFR and ETR: The number of trees in the forest, the maximum depth of the



A Wide-Area File Transfer Performance Predictor 9

tree, and whether bootstrap samples are used when building trees. ABR: The max-
imum number of estimators at which boosting is terminated, and the learning rate.
RR: The regularization strength. Note that linear regression does not have tunable
parameters.

4.4 Model selection

For each edge, we select the best model as follows. First, as shown in Figure 3, we
split transfers before 05/01/2017 as two sets: the first 70% of the transfers as training
set and the remaining 30% as validation set. For each supervised learning algorithm,
we run hyperparameter optimization with ns = 200, 10-fold cross validation on the
training set, and root mean squared error as the metric that needs to be minimized.
This is repeated for each algorithm. Once we obtain the best hyperparameters from
each of the seven ML algorithms, we predict the throughput on the validation set.
The best model for the edge is the one that has the minimal prediction error on the
validation set.

Figure 4 shows the overall accuracy of each algorithm on the validation set, in
which the median absolute percentage error (MdAPE) is used to represent model
accuracy. The Best in the plot is the accuracy when each edge uses the best algo-
rithm. From the results, we can observe that XGB works the best for most number

ABR BR ETR GBR RFR RR XGB Best
Algorithm

0

20

40

60

80

100

M
dA

PE
 (%

)

Fig. 4: Validation results. Best represent validation errors when the best algorithm is
used for each edges.

of edges; GBR and BR seem to have similar accuracy. However, the best case obvi-
ously outperforms any single algorithm. Table 2 presents the statistics on the winning
algorithms.

5 Experimental results

After identifying the best model for each edge, we search hyperparameters again and
retrain the model with the combined training and validation data sets. Then, we
evaluate model accuracy on the test data set (i.e., transfers between 05/01/2017 and
12//31/2017). From a practical deployment perspective, we focus on the following
three issues:



10 Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster

Table 2: Statistics of the best model selection

Algorithm Pairs

GradientBoostingRegressor 23
Ridge 6
XGBRegressor 31
BaggingRegressor 18
AdaBoostRegressor 9
RandomForestRegressor 14
ExtraTreesRegressor 14

1. How many historical instances are needed to train the model? That is, how many
old instances can be abandoned?

2. What is the appropriate retraining frequency to deal with changes because of
software or hardware upgrades?

3. Do we have to take into account the temporal aspect of the data? That is, can
we randomly choose K transfers or should we use the most recent K transfers for
model training.

5.1 Size of the training data

The time required to retrain the model scales with the number of data points consid-
ered. Furthermore, since endpoint performance can be expected to change over time,
for example because of software or hardware upgrades, it is necessary to remove the
data points before such changes. But identifying the point at which an upgrade or
other change occurs may not always be straightforward in the online setting. There-
fore, we empirically evaluate the volume of historic data required to make a reasonable
prediction. Here, we use the most recent w (w ∈ {25, 50, 100, 500, 1000, 1500, 2000})
transfers before May 1, 2017, to train the model, and we test each trained model on
all transfers from May 1, 2017 to December 31, 2017. Figure 5 compares quantile dis-
tribution of MdAPE under different window sizes for training and the corresponding
model training time. In the plot, Q25, Q50 and Q75 represent 25th, 50th and 75th
quantile of MdAPE separately. RCT and RND denotes most recent Ntrain trans-
fers and randomly chosen Ntrain transfers, respectively. All means that we used all
transfers before May 1, 2017, to train the model.

Models trained with random data points are slightly better than models trained
with the most recent data points; in most cases this performance improvement is only
a little (except the w = 25 case). The results show that increasing the values of w
decreases the error but only until w = 1000. The observed improvements become
insignificant for w > 1000. However, the model training time increases significantly
when the window size is increased (this is true for all cases except when w is increased
from 25 to 50 and from 1000 to 1500). These results indicate that most recent 500 to
1,000 data points is sufficient for training the model.

We use the methods that users would use in practice, specifically, average, median
and the performance of the previous transfer, as the baselines. Specifically, for a given
new transfer, there are w historical transfers over the same edge, we consider the
median performance, average performance and the performance of the most recent
one transfer as baseline predictions. Figure 6 shows the 50th quantile of MdAPE for
these three baseline predictors.



A Wide-Area File Transfer Performance Predictor 11

25 50 100 500 1000 1500 2000 All
Window size

20

30

40

50

60

70

80

90

M
dA

PE
 (%

)

RCT-Q25
RND-Q25

RCT-Q50
RND-Q50

RCT-Q75
RND-Q75

0

500

1000

1500

2000

2500

3000

Av
er

ag
e 

tra
in

in
g 

tim
e 

(s
)

Fig. 5: Prediction errors (solid lines) and model training time (dotted blue line) as
a function of the number of transfers (Ntrain) used to train the model. Q25, Q50
and Q75 represent 25th, 50th and 75th quantile of MdAPE separately. RCT and
RND denotes most recent Ntrain transfers and randomly chosen Ntrain transfers
individually. All means that we used all transfers before May 1, 2017, to train the
model.

In comparison with Figure 5 (RCT-Q50 and RND-Q50 ), these three baseline
predictors have significantly worse prediction errors than our machine learning based
predictor.

5.2 Retraining frequency

We evaluated and compared the results obtained when retraining models every 3
months, 1 month, 2 weeks, 1 week, 2 days, and online. To this end, we split the test
dataset into multiple datasets based on the frequency. For the 3 month frequency, we
train the model using all transfers before May 1, 2017, and evaluate it with transfers
from May 1, 2017, to July 31, 2017. Then, we retrain model using data before August
1, 2017 and evaluate it with the transfer from August 1, 2017 to October 31, 2017,
and so on. Similarly, for the monthly frequency, we evaluate the model trained using
all transfers before May 1, 2017 with the transfers in May, 2017. Then we retrain the
model using all the data before June 1, 2017, and evaluate it with transfers in June,
2017, and so on. We follow a similar procedure for other retraining frequencies. For
online retraining, we monitor the prediction error of new transfers and retrain the
model with the most recent w transfers if the MdAPE of the recent k transfers is
larger than a certain threshold. In this study, we set w, k, and threshold to 100, 4,
and 15%, respectively. We also experimented with w, k, and threshold of 500, 10, and
15%, respectively, but those values did not result in a significant difference.

Figure 7 compares the MdAPE distribution on all edges for different retraining
frequencies. We observe that more frequent retraining results in lower errors and that
online retraining achieves the lowest error.

5.3 Feature importance

To gain insights into the impact of the features listed in Table 1 on the throughput, we
analyze their importance using the relative feature importance capability of XGB [39].



12 Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster

25 50 100 500 1000 1500 2000 All
Window size

80

90

100

110

120

130

140

Q5
0 

M
dA

PE
 (%

)

RCT-Median
RCT-Average
Previous

RND-Median
RND-Average

Fig. 6: The prediction error (50th quantile MdAPE) when use median, average and
previous transfer as performance predictor.

3 months 1 month 2 weeks 1 week 2 days online
Re-train frequency

0

20

40

60

80

100

M
dA

PE
 (%

)

Fig. 7: Retrain frequency versus prediction error on testing dataset.

First, we compute the relative importance of the features on each edge and select the
five most important ones. Then we tabulate the frequency of the top five in all the
edges in Figure 8.

As one can see from Figure 8, transfer size Nb and Ksout, Kdin and Ssout which
have contention in the same direction with the transfer of interest, are important for
most of the endpoint pairs. The four new introduced features in this paper (Qsout,
Qdin, Qsin and Qdout), which quantify contention from simultaneous transfers from
the same institution (within eight kilometers), are also important.

6 Further insights

We hypothesize that unknown load is the cause of the high prediction error for some
of the endpoint pairs. Here we examine the effect of unknown load and study transfers
with less unknown load.

6.1 Impact of unknown load

Three factors may affect the data transfer rate: user-specified tunable parameters,
transfer characteristics, and competing load [18, 26]. To validate our hypothesis con-



A Wide-Area File Transfer Performance Predictor 13

K
sou
t
Nb S

sou
t

K
din

Q
sin

Q
do
ut

G
src

S
din

S
sin

K
sin

Q
sou
t

Q
din Nd G

dst

K
do
ut

S
do
ut
Nf C

Features

0

20

40

60

80

100

To
p 

5 
fre

qu
en

cy
 (%

)

Fig. 8: Frequency of features that appear in the top 5 most important features of each
edge model.

cerning unknown external load, we consider transfers from Argonne to Fermilab. The
reasons for selecting this endpoint pair are twofold: (1) it has a sufficient number of
transfers with similar file characteristics (number of files, directories, and average file
size) and the same tunable Globus parameters; and (2) we observe quite different
rates for these transfers. Since transfer parameters and characteristics are identical,
the transfer rate should be affected only by competing load.

We split the transfers over this edge into three groups:

1. Transfers with rate greater than 50% of the maximum rate observed over this
endpoint pair. These transfers are likely to have less contending load.

2. After filtering out the transfers in group (1), for each remaining transfer, we
compute the aggregate outgoing rate on source endpoint during the transfer by
summing the rate of the transfer under consideration and the outgoing rates
for other overlapping transfers at the source endpoint (R+Ksout). Similarly, we
compute the aggregate incoming rate on destination endpoint during each transfer
by summing the rate of the transfer under consideration and the incoming rates
of other overlapping transfers at the destination endpoint (R + Kdin). We sort
the transfers in descending order by their source endpoint’s aggregate outgoing
rate and take the top 5%. Then, we sort the remaining transfers in descending
order of their destination endpoint’s aggregate incoming rate and take the top
5%. These transfers that form group (2) have significant known contending load
but less unknown contending load among the transfers compared with group (1).

3. We apply the same procedure that created group (2), but extract bottom 5% on
source and destination endpoints. These transfers are likely to have high unknown
contending load because their known load is less and throughput is low as well.

As a result, we get 161 transfers in group (1), 175 in group (2), and 175 in group
(3) (shown in Figure 9). We split each group by 70% and 30% for training and testing
respectively. Table 3 shows the prediction errors with different algorithms.

Group 1 and 2 have low prediction error with nonlinear models (the second and
third model in Table 3) and group 3 always have higher error than the first two groups.
The linear model works well for group 1 but not for group 2 or 3. The poor prediction
accuracy of linear model and the high prediction accuracy of machine learning models
in group 2 indicate nonlinear relationship between ‘known load’ and ‘transfer rate’,
which is consistent with findings in [18].



14 Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster

0 20 40 60 80 100 120 140 160
Data points sequence

0

50

100

150

200

250

Ra
te

 (M
B/

s)

Group 1
Group 2
Group 3

Fig. 9: Group transfers by their rate and known load.

Table 3: Prediction error with different machine learning algorithm on the three
groups.

Algorithm Group Q50(%) Q75(%) Q90(%)

Ridge Regression
1 11.24 18.19 22.63
2 20.04 33.08 64.33
3 35.37 126.54 223.29

XGBRegressor
1 11.85 22.91 25.20
2 8.20 18.06 29.36
3 27.16 51.02 72.49

BaggingRegressor
1 9.54 18.83 25.02
2 9.46 14.81 32.64
3 29.85 51.27 133.48

6.2 Transfers with fewer unknowns

Since transfers with high unknown load is the source of noise when we use them to
train the machine learning model, here we trained the models using transfers with
less unknown load and study how they perform. We compute the relative ‘known
load (KL)’ for a transfer as the ratio of aggregate transfer rate to maximum observed
aggregated throughput. For the source endpoint of the transfer of interest, this is
given by:

KLsrc
k =

Ksout +Rk

DRmax
, (2)

where DRmax is the maximum aggregated outgoing throughput observed from the
source endpoint. Similarly, for the destination endpoint of the transfer of interest, we
have:

KLdst
k =

Kdin +Rk

DWmax
. (3)

where DWmax is the maximum aggregated incoming throughput observed from the
destination endpoint. We then define the relative load of a transfer k as:

KLk = max
(
RLsrc

k , RLdst
k

)
. (4)

Intuitively, KLk measures the fraction of bandwidth usage that has been observed
from Globus transfers. A higher value means less unknown (non-Globus) contending



A Wide-Area File Transfer Performance Predictor 15

load, as the total bandwidth available at the source and destination is fixed and the
majority of the capacity usage is known. Thus in this section, we use

UCk = 1−KLk (5)

to represent the ‘fractional capacity unknown’ to the transfer. A larger value means
that the transfer is more likely to have experienced unknown load.

In order to verify the influence of unknown load on the model being trained, we
use only transfers with UCk ≤ 0.5 to train the model. Specifically, we ignore transfers
with UCk > 0.5 in the training data set as these transfers are more likely to have
high unknown contending load.

Then, we use transfers with UCk ≤ 0.5 to train the model and test the trained
model on the whole testing set (i.e., transfers between 05/01/2017 and 12/31/2017. We
infer that the model trained with these clean data is more representative of transfers
with less unknown load because there is less noise in the training set. Thus, we expect
this model to make better predictions for transfers with less unknown load.

Figure 10 compares the relationship between ‘fractional capacity unknown’ and the
absolute percentage error. The green cross points are prediction errors for the model
that was trained with all transfers before 05/01/2017 (irrespective of the ‘fractional
capacity unknown’) and red star points represent prediction errors for the model that
was trained by using transfers before 05/01/2017 and with UCk ≤ 0.5.

0.0 0.2 0.4 0.6 0.8 1.0
Fractional capacity unknown

0

20

40

60

80

100

Pe
rc

en
ta

ge
 e

rro
r All transfers

Less unknown load transfers

(a) cuny.edu to a Globus Connect Personal

0.0 0.2 0.4 0.6 0.8 1.0
Fractional capacity unknown

0

20

40

60

80

100

Pe
rc

en
ta

ge
 e

rro
r All transfers
Less unknown load transfers

(b) cwru.edu to a Globus Connect Personal

0.0 0.2 0.4 0.6 0.8 1.0
Fractional capacity unknown

0

20

40

60

80

100

Pe
rc

en
ta

ge
 e

rro
r All transfers

Less unknown load transfers

(c) harvard.edu to a Globus Connect Per-
sonal

0.0 0.2 0.4 0.6 0.8 1.0
Fractional capacity unknown

0

20

40

60

80

100

Pe
rc

en
ta

ge
 e

rro
r All transfers

Less unknown load transfers

(d) westgrid.ca to a Globus Connect Per-
sonal

Fig. 10: Comparison of the ‘fractional capacity unknown’ of a transfer versus absolute
performance prediction error (%), for two models: one trained only with less unknown
load transfers and the other trained with all transfers. We show results for four differ-
ent source endpoints. We note that the destination endpoints in the figures are also
different from each other.



16 Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster

As shown in Figure 10, when we look at the prediction errors for either model i.e.,
the model trained with all transfers (green cross points) or the model trained only
by using transfers with UCk ≤ 0.5 (red star points), we observe that the transfers
with lower ‘fractional capacity unknown’ get more accurate prediction. The reason is
that these transfers are less likely to have high unknown load. When we compare the
prediction error of the same transfer, i.e. a green point and a red point with the same
UCk, model that was trained with cleaner data (marked by red star points) make
more accurate predictions than the model that was trained with all transfers (marked
by green cross points), when UCk is less than 0.5. However, we cannot use this method
to improve the model accuracy because the relative known load is not known to us
before the transfers are done. We use this analysis to show the influence of external
(unknown) load in training as well as in prediction. To improve the prediction, we
need to develop methods that can measure the external load online.

7 Related work

Several researchers have developed regression-based throughput prediction models
using historical data. Vazhkudai et al. [41] developed mean, median, autoregressive,
sliding window, and rule-based approaches to predict the performance of wide area
data transfers. Swany et al. [42] developed a multivariate time-series forecasting tech-
nique to enable Network Weather Service, a TCP throughput prediction framework,
to automatically correlate monitoring data from different sources, and to exploit that
observed correlation to make better, longer-ranged forecasts. Lu et al. [43] developed
TCP throughput predictions based on an exponentially weighted moving average of
bandwidth probes. He et al. [44] studied analytical and empirical models for predicting
the throughput of large TCP transfers. Their empirical approach used standard time
series forecasting techniques to predict throughput based on a history of throughput
measurements from previous TCP transfers on the same path. Huang et al. [45] devel-
oped time series of windows of segments arriving at the receiver, and predicted future
throughput by exploiting knowledge of how TCP manages transfer window size. When
the file transfer time series resembles a known TCP pattern, this information is used
for prediction, otherwise simple heuristics are used.

A central theme in all of the aforementioned works is that the problem is tackled
from a time-series perspective. There is always a temporal aspect to the prediction: in
order to predict the future throughputs accurately, the approach requires immediate
past throughputs. Our approach, in contrast, treats the throughput prediction from
a static modeling perspective. Consequently, we can use historical data to predict
throughput as long as the relationship between inputs and outputs does not change.

A number of previous works have treated throughput prediction without temporal
dependency. Shah et al. [46] developed an artificial neural network model for TCP
throughput estimation based on loss event rate, round trip time, retransmission time
out, and number of packets acknowledged. Our work deals with application-level end-
to-end WAN transfer and considers features at the endpoint level. Mirza et al. [47]
developed a support vector regression approach to predict throughput of TCP trans-
fers in a controlled laboratory setting. Their approach uses prior file transfer history
and measurements of endpoint pair network path properties as a training data for
throughput prediction. Kettimuthu et al. [48] developed linear models that can con-
trol bandwidth allocation. They showed that log models that combine total source



A Wide-Area File Transfer Performance Predictor 17

concurrency, destination concurrency, and a measure of external load are effective.
Nine et al. [49] analyzed historical data consisting of 70 million file transfers and ap-
plied data mining techniques to extract the hidden relations among the parameters
and the optimal throughput. They used neural networks and support vector machines
to develop predictive models and to find optimal parameter settings. Our approach
considers a broad range of features, several high performing supervised learning al-
gorithms, and adopts a rigorous model selection methodology in which the best is
automatically selected based on the training data.

Arslan et al. [25] developed the HARP auto-tuning system, which uses historical
data to derive endpoint-pair-specific models based on protocol parameters. By running
probing transfers, HARP captures the current load on the network, which is then
augmented with a polynomial regression model to increase the predictive accuracy.
Moreover, we consider several models and choose the best automatically to hedge
against the poor performance of any single method. Hours et al. [50] introduced
the use of copula, a statistical approach to model the dependence between random
variables, to model the relationship between network parameters and throughput
as multidimensional conditional densities. While this method is orthogonal to the
approach we used, it is limited by the data assumptions and presence of outliers.

Liu et al. [51] conducted a systematic examination of a large set of data transfer
logs to characterize transfer characteristics, including the nature of the datasets trans-
ferred, achieved throughput, user behavior, and resource usage. Their analysis yielded
new insights that can help design better data transfer tools, optimize networking and
edge resources used for transfers, and improve the performance and experience for end
users. Liu et al. [52, 53] analyze various logs pertaining to wide area data transfers
in and out of a large scientific facility. That comprehensive analysis yielded valuable
insights on data transfer characteristics and behavior, and revealed inefficiencies in a
state-of-the-art data movement tool.

8 Discussion and conclusion

Wide-area data transfer is an important aspect of distributed science. Faster delivery
of data is important but predictable transfers are equally (or even more) important.
We developed machine learning models to predict the performance of wide area data
transfer. We also evaluated them for practical deployment. We believe that our evalua-
tion strategy will serve as a reference to evaluate machine learning models for practical
deployments not just for predicting the performance of wide area data transfers but
also for other prediction use cases. We showed that our models perform well for many
transfers, with a median prediction error of ≤21% for 50% of source-destination pairs
(“edges”), and ≤32% for 75% of the edges. For other edges, errors are high, an ob-
servation that we attribute to unknown load on the network or on endpoint storage
systems. We also showed that unknown load can interfere with model training and
that eliminating transfers with high unknown load from training data can improve
prediction accuracy for transfers with less unknown load. Thus, collecting more infor-
mation about endpoint load can further improve the prediction accuracy.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, under contract DE-AC02-06CH11357. We gratefully acknowledge



18 Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster

the computing resources provided and operated by the Joint Laboratory for System
Evaluation (JLSE) at Argonne National Laboratory.

References

1. R. Kettimuthu, G. Agrawal, P. Sadayappan, and I. Foster, “Differentiated scheduling of
response-critical and best-effort wide-area data transfers,” in 2016 IEEE International
Parallel and Distributed Processing Symposium, May 2016, pp. 1113–1122.

2. W. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder,
V. Nefedova, D. Quesnel, and S. Tuecke, “Data management and transfer in high-
performance computational grid environments,” Parallel Comput., vol. 28, no. 5, pp. 749–
771, May 2002. [Online]. Available: http://dx.doi.org/10.1016/S0167-8191(02)00094-7

3. R. Kettimuthu, Z. Liu, D. Wheeler, I. Foster, K. Heitmann, and F. Cappello,
“Transferring a petabyte in a day,” Future Generation Computer Systems, vol. 88, pp.
191 – 198, 2018. [Online]. Available: https://doi.org/10.1016/j.future.2018.05.051

4. G. L. Stavrinides, F. R. Duro, H. D. Karatza, J. G. Blas, and J. Carretero,
“Different aspects of workflow scheduling in large-scale distributed systems,” Simulation
Modelling Practice and Theory, vol. 70, pp. 120 – 134, 2017. [Online]. Available:
https://doi.org/10.1016/j.simpat.2016.10.009

5. Z. Liu, R. Kettimuthu, S. Leyffer, P. Palkar, and I. Foster, “A mathematical
programming- and simulation-based framework to evaluate cyberinfrastructure design
choices,” in IEEE 13th International Conference on e-Science, Oct 2017, pp. 148–157.
[Online]. Available: http://doi.org/10.1109/eScience.2017.27

6. T. Bicer, D. Gürsoy, R. Kettimuthu, F. De Carlo, and I. T. Foster, “Optimization of
tomographic reconstruction workflows on geographically distributed resources,” Journal
of Synchrotron Radiation, vol. 23, no. 4, pp. 997–1005, Jul 2016.

7. R. Kettimuthu, Z. Liu, I. Foster, P. H. Beckman, A. Sim, J. Wu, W. keng Liao,
Q. Kang, A. Agrawal, and A. Choudhary, “Toward autonomic science infrastructure:
Architecture, limitations, and open issues,” in the 1st Autonomous Infrastructure for
Science workshop, ser. AI-science 2018. New York, NY, USA: ACM, 2018. [Online].
Available: http://doi.acm.org/10.1145/3217197.3217205

8. N. Rao, Q. Liu, Z. Liu, R. Kettimuthu, and I. Foster, “Throughput analytics of data
transfer infrastructures,” in 13th EAI International Conference on Testbeds and Research
Infrastructures for the Development of Networks & Communities. Springer, 2018.

9. R. Kettimuthu, G. Vardoyan, G. Agrawal, P. Sadayappan, and I. Foster, “An elegant
sufficiency: load-aware differentiated scheduling of data transfers,” in SC15: Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis,
Nov 2015, pp. 1–12.

10. S. Vazhkudai, “Enabling the co-allocation of grid data transfers,” in Proceedings. First
Latin American Web Congress, Nov 2003, pp. 44–51.

11. D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation, architecture,
algorithms, performance,” IEEE/ACM Transactions on Networking, vol. 14, no. 6, pp.
1246–1259, 2006.

12. B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter, “The NetLog-
ger methodology for high performance distributed systems performance analysis,” in 7th
International Symposium on High Performance Distributed Computing. IEEE, 1998,
pp. 260–267.

13. T. Kosar, G. Kola, and M. Livny, “Data pipelines: Enabling large scale multi-protocol
data transfers,” in 2nd Workshop on Middleware for Grid Computing, 2004, pp. 63–68.

14. T. Kelly, “Scalable TCP: Improving performance in highspeed wide area networks,”
ACM SIGCOMM Computer Communication Review, vol. 33, no. 2, pp. 83–91, 2003.

http://dx.doi.org/10.1016/S0167-8191(02)00094-7
https://doi.org/10.1016/j.future.2018.05.051
https://doi.org/10.1016/j.simpat.2016.10.009
http://doi.org/10.1109/eScience.2017.27
http://doi.acm.org/10.1145/3217197.3217205


A Wide-Area File Transfer Performance Predictor 19

15. R. Wolski, “Forecasting network performance to support dynamic scheduling using the
Network Weather Service,” in 6th IEEE Symposium on High Performance Distributed
Computing, Portland, Oregon, 1997.

16. T. J. Hacker, B. D. Athey, and B. Noble, “The end-to-end performance effects of parallel
TCP sockets on a lossy wide-area network,” in 16th International Parallel and Distributed
Processing Symposium, ser. IPDPS ’02. Washington, DC, USA: IEEE Computer Society,
2002, pp. 314–. [Online]. Available: http://dl.acm.org/citation.cfm?id=645610.661894

17. N. Rao, S. Sen, Z. Liu, R. Kettimuthu, and I. Foster, “Learning concave-convex profiles
of data transport over dedicated connections,” in International Conference on Machine
Learning for Networking. Springer, 2018.

18. Z. Liu, P. Balaprakash, R. Kettimuthu, and I. Foster, “Explaining wide area data transfer
performance,” in 26th ACM Symposium on High-Performance Parallel and Distributed
Computing, 2017.

19. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and I. Fos-
ter, “The Globus striped GridFTP framework and server,” in SC, Washington, DC,
USA, 2005, pp. 54–61.

20. www.slac.stanford.edu/ abh/bbcp/, BBCP, 2017 (accessed January 3, 2017), http://
www.slac.stanford.edu/∼abh/bbcp/.

21. FDT, FDT - Fast Data Transfer, (accessed April, 2017), http://monalisa.cern.ch/FDT/.

22. B. W. Settlemyer, J. D. Dobson, S. W. Hodson, J. A. Kuehn, S. W. Poole, and T. M.
Ruwart, “A technique for moving large data sets over high-performance long distance
networks,” in 2011 IEEE 27th Symposium on Mass Storage Systems and Technologies
(MSST), May 2011, pp. 1–6.

23. K. Chard, S. Tuecke, and I. Foster, “Globus: Recent enhancements and future plans,” in
XSEDE16 Conference on Diversity, Big Data, and Science at Scale. ACM, 2016, p. 27.

24. E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani,
W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger, “Pegasus: a workflow man-
agement system for science automation,” Future Generation Computer Systems, vol. 46,
pp. 17–35, 2015.

25. E. Arslan, K. Guner, and T. Kosar, “Harp: Predictive transfer optimization based on
historical analysis and real-time probing,” in SC ’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, Nov
2016, pp. 288–299.

26. Z. Liu, R. Kettimuthu, I. Foster, and P. H. Beckman, “Towards a smart data transfer
node,” Future Generation Computer Systems, p. 10, June 2018.

27. E. Arslan, K. Guner, and T. Kosar, “HARP: predictive transfer optimization based
on historical analysis and real-time probing,” in SC, Piscataway, NJ, USA, 2016, pp.
25:1–25:12. [Online]. Available: http://dl.acm.org/citation.cfm?id=3014904.3014938

28. E. Arslan and T. Kosar, “A heuristic approach to protocol tuning for high performance
data transfers,” ArXiv e-prints, Aug. 2017.

29. J. Kim, E. Yildirim, and T. Kosar, “A highly-accurate and low-overhead prediction
model for transfer throughput optimization,” Cluster Computing, vol. 18, no. 1, pp.
41–59, 2015.

30. www.maxmind.com, MaxMind: IP Geolocation and Online Fraud Prevention, 2017 (ac-
cessed April 3, 2017), https://www.maxmind.com.

31. R. Maclin and D. W. Opitz, “Popular ensemble methods: An empirical study,” CoRR,
vol. abs/1106.0257, 2011. [Online]. Available: http://arxiv.org/abs/1106.0257

32. A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal
problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

33. L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–140, 1996.

34. T. K. Ho, “Random decision forests,” in 3rd International Conference on Document
Analysis and Recognition, ser. ICDAR ’95. IEEE, 1995, pp. 278–282. [Online].
Available: http://dl.acm.org/citation.cfm?id=844379.844681

http://dl.acm.org/citation.cfm?id=645610.661894
http://www.slac.stanford.edu/~abh/bbcp/
http://www.slac.stanford.edu/~abh/bbcp/
http://monalisa.cern.ch/FDT/
http://dl.acm.org/citation.cfm?id=3014904.3014938
https://www.maxmind.com
http://arxiv.org/abs/1106.0257
http://dl.acm.org/citation.cfm?id=844379.844681


20 Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster

35. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct 2001.
[Online]. Available: https://doi.org/10.1023/A:1010933404324

36. P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine learning,
vol. 63, no. 1, pp. 3–42, 2006.

37. Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line learning and
an application to boosting,” in European conference on computational learning theory.
Springer, 1995, pp. 23–37.

38. J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals
of statistics, pp. 1189–1232, 2001.

39. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” arXiv preprint
arXiv:1603.02754, 2016.

40. J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”
J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2188385.2188395

41. S. Vazhkudai, J. M. Schopf, and I. Foster, “Predicting the performance of wide area data
transfers,” in International Parallel and Distributed Processing Symposium. IEEE, 2001,
pp. 10–pp.

42. M. Swany and R. Wolski, “Multivariate resource performance forecasting in the Network
Weather Service,” in Supercomputing Conference. IEEE, 2002, pp. 11–11.

43. D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante, “Characterizing and predicting
TCP throughput on the wide area network,” in 25th IEEE International Conference on
Distributed Computing Systems. IEEE, 2005, pp. 414–424.

44. Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large transfer TCP through-
put,” Computer Networks, vol. 51, no. 14, pp. 3959–3977, 2007.

45. T.-i. Huang and J. Subhlok, “Fast pattern-based throughput prediction for TCP bulk
transfers,” in International Symposium on Cluster Computing and the Grid, vol. 1.
IEEE, 2005, pp. 410–417.

46. S. M. H. Shah, A. ur Rehman, A. N. Khan, and M. A. Shah, “TCP throughput esti-
mation: A new neural networks model,” in International Conference on Emerging Tech-
nologies. IEEE, 2007, pp. 94–98.

47. M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning approach to TCP
throughput prediction,” IEEE/ACM Transactions on Networking, vol. 18, no. 4, pp.
1026–1039, 2010.

48. R. Kettimuthu, G. Vardoyan, G. Agrawal, and P. Sadayappan, “Modeling and optimizing
large-scale wide-area data transfers,” in 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. IEEE, 2014, pp. 196–205.

49. M. Nine, K. Guner, and T. Kosar, “Hysteresis-based optimization of data transfer
throughput,” in 5th International Workshop on Network-Aware Data Management.
ACM, 2015, p. 5.

50. H. Hours, E. Biersack, and P. Loiseau, “A causal approach to the study of TCP perfor-
mance,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 7, no. 2,
p. 25, 2016.

51. Z. Liu, R. Kettimuthu, I. Foster, and N. S. V. Rao, “Cross-geography scientific
data transferring trends and behavior,” in Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing, ser. HPDC
’18. New York, NY, USA: ACM, 2018, pp. 267–278. [Online]. Available:
http://doi.acm.org/10.1145/3208040.3208053

52. Z. Liu, R. Kettimuthu, I. Foster, and Y. Liu, “A comprehensive study of wide area
data movement at a scientific computing facility,” in IEEE International Conference on
Distributed Computing Systems, ser. Scalable Network Traffic Analytics. IEEE, 2018.

53. N. Rao, Q. Liu, S. Sen, Z. Liu, R. Kettimuthu, and I. Foster, “Measurements and ana-
lytics of wide-area file transfers over dedicated connections,” in 20th International Con-
ference on Distributed Computing and Networking. ACM, 2019.

https://doi.org/10.1023/A:1010933404324
http://dl.acm.org/citation.cfm?id=2188385.2188395
http://doi.acm.org/10.1145/3208040.3208053

	Building a Wide-Area File Transfer Performance Predictor: An Empirical Study

