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Modern science and engineering computing environments often feature storage systems of different types, from parallel file systems
in high-performance computing centers to object stores operated by cloud providers. To enable easy, reliable, secure, and performant
data exchange among these different systems, we propose Connector, a plug-able data access architecture for diverse, distributed
storage. By abstracting low-level storage system details, this abstraction permits a managed data transfer service (Globus in our case)
to interact with a large and easily extended set of storage systems. Equally important, it supports third-party transfers: that is, direct
data transfers from source to destination that are initiated by a third-party client but do not engage that third party in the data path.
The abstraction also enables management of transfers for performance optimization, error handling, and end-to-end integrity. We
present the Connector design, describe implementations for different storage services, evaluate trade-offs inherent in managed vs.
direct transfers, motivate recommended deployment options, and propose a model-based method that allows for easy characterization
of performance in different contexts without exhaustive benchmarking.
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1 INTRODUCTION

Easy access to data produced by scientific research is essential if such products are to be widely available for research,
education, business, and other purposes [47]. Far from being mere rehashes of old datasets, evidence shows that studies
based on analyses of previously published data can achieve just as much impact as the original projects [25]. Reducing
barriers to the sharing of scientific data is a multi-faceted challenge [65], but one fundamental need is efficient, secure,
and reliable access to data, regardless of location.
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The work described here is concerned with addressing two important obstacles to scientific data access, namely
storage system diversity and efficient data movement. Ideally, once a scientist locates data of interest, they should
be able to retrieve required components easily, reliably, efficiently, and securely, without concern for the details of
the source and destination storage systems. In practice, considerations such as domain practices, cost, performance,
data source, and analysis workflows result in scientists storing data on a wide range of storage systems, often with
idiosyncratic interfaces: for example, commercial cloud object-based storage, such as Amazon Simple Storage Service
(S3), Google Cloud Storage, and Microsoft Azure Blob Storage; community object-based storage solutions, such as Ceph
and OpenStack Swift; parallel filesystems, such as Lustre, GPFS, and Intel DAOS; and cloud-based file hosting services
and synchronization services, such as Box, Google Drive, Microsoft OneDrive, and Dropbox. Furthermore, the datasets
that are created and analyzed in science are frequently large, reaching terabytes or even petabytes in size. And while
analyzing data in place may be preferred [31], it is often not possible due to computational limitations or other factors.
Thus, scientists must be able not only to access diverse data stores but to optimize data movement among different
combinations of such systems. This need creates its own challenges in terms of leveraging these resources without
overburdening application researchers [52].

This quest for universal data access has spurredmany proposals over the years, from general solutions like Gopher [27]
and HTTP [11] to more specialized approaches like WebDAV [64] and OpenDAP [20]. However, such solutions have
been concerned primarily with enabling uniform data access, not efficient data movement among different systems.
Important step towards enabling seamless data access and movement among diverse storage systems was taken more
than a decade ago, with first the definition of the GridFTP protocol [2] and then, within the Globus implementation
of the GridFTP protocol, the development of the Data Storage Interface (DSI) [3], within the Globus implementation
of the GridFTP protocol, as a unified storage interface for use by data movement tools. Globus GridFTP and its DSI
were initially supported only on POSIX-compliant file systems [3], but the storage landscape increasingly includes
cloud object stores, tape archives, and other proprietary storage systems. Technically, there are two major challenges of
extending DSI to support modern cloud storage service: (1) a module to enable the authentication process of the cloud
storage and the delegation or passing of credential from user to connector either directly or through a service like
Globus Auth [59]; (2) For security concern, there are restrictions on APIs for accessing cloud storage, for example one
cannot call API too frequently which is not true to the DSI that interact with local storage systems. The evolution of DSI
to accommodate new storage systems while maintaining backward compatibility, and also to incorporate support for
third-party transfers and modern authentication and authorization mechanisms, produced the Connector abstraction
that we describe in this paper. This abstraction, as instantiated in an interface and implementation, enables a wide
variety of storage systems to be accessed in a consistent, performant, and secure manner, simply by installing the
required Connector server software [16]. Equally important, it supports the management of transfers by cloud-hosted
management services, such as the Globus service that we consider in this paper.

While a uniform interface to storage has many advantages, any abstraction layer tends to introduce overheads that
can impact performance. Understanding the nature of these overheads is essential to determining where and when
the abstraction may be used. To develop this understanding, we first present here the Connector abstraction and then
evaluate overheads and performance when the Globus implementation of this abstraction is used to move data between
diverse storage systems. The primary contributions of this paper are the following:

• We describe Connector, a data storage interface that permits uniform access to a wide range of storage systems,
including both cloud storage and conventional file systems, while supporting third-party managed transfers.
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• We propose a performance model-based method for exploring performance issues in different contexts without
exhaustive benchmarking.

• We draw conclusions about implications for the Connector design and its Globus implementation, and recommend
best practices.

The rest of this paper is organized as follows. In §2, we motivate the need for a uniform interface for data movement
across diverse storage systems, including cloud storage services. In §3, we describe how Connector extends the original
DSI to address new challenges in cloud-based storage service. We describe the details of Connector and six sample
implementations in §4. In §5, we present a performance-model-based approach to studying costs associated with
Connector data movement, which we show in §6 can be used to analyze the throughput of Connector-based data
movement. In §7, we evaluate the influence of data integrity checking, which shows unique characteristics to Connector.
In §8 we discuss best practices for production deployment. In §9 we review related work , and in §10 we summarize our
conclusions and discuss future work.

2 MOTIVATION

The science and engineering community uses a large and growing number and variety of storage systems. Each such
system has been created in response to specific needs for storing and accessing science and engineering data, needs
that cover a broad spectrum of cost, scale, performance, and other requirements. Different systems focus on distinct
requirements, provide distinct services to their clients, and often implement different interfaces and protocols for data
access.

POSIX I/O provides open(), close(), read(), write(), and lseek() operations, with strict consistency and coherence
requirements: for example, a write operation must be visible to other clients immediately after the system call returns.
POSIX serves as the I/O interface for many storage systems, such as Lustre and GPFS, that are widely used in science
institutions. Although high-level parallel I/O middleware libraries, such as MPI-IO [57], HDF5 [26], ADIOS [38], and
PnetCDF [35], provide relaxed semantics for file system access, most scientific HPC applications use POSIX as their
default interface for interacting with local storage [44].

Object stores, widely used in cloud computing, manage data as objects instead of files. They provide a single flat global
name space and support just a few simple operations, such as PUT and GET, and a weaker form of consistency: eventual
consistency. These features can simplify use of lower-cost commodity hardware and high-speed access. However,
although APIs provided by cloud storage providers enable high-speed access to data from within the cloud, they are not
typically configured to optimize data of movement between cloud and other remote locations, such as storage systems at
science institutions or other cloud service providers. Furthermore, cloud APIs are not easily incorporated into research
automation tools such as workflow systems and HPC schedulers, which typically use the POSIX interface for data
staging.

2.1 Third-Party Transfer

Most remote access mechanisms encountered in storage systems are designed to support client-server or two-party
transfers. That is, a user (client) wanting to read or write data first authenticates to the storage system (server) and then
interacts with the server via a series of client-server interactions. However, while simple, this interaction modality has
numerous limitations, due notably to the need for clients to manage various complexities of the data transfer process,
such as detecting and responding to failures.
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Thus an important data transfer pattern in many science and engineering settings involves a “third party” (e.g.,
an agent working on behalf of a user) initiating and managing data movement between two remote computers (or
instruments). Support for such third-party data transfers allows users to initiate, manage, and monitor data movement
from anywhere, without direct access to the systems involved in the data movement. Logic for detecting and responding
to failures (e.g., via retries) can be incorporated into the agent, simplifying the logic required at the client. This feature
also facilitates the integration of data movement operations into a wide variety of data automation tools, from shell
scripts to scientific workflow engines, such as Galaxy [28], Kepler [4], Parsl [9], Pegasus [23], and Swift/T [66]. The
ability to request data transfers enables the workflow systems to execute transparently on remote resources.

A third-party transfer necessarily engages two distinct communication channels, one for control and one for data. The
control channel is used for sending protocol messages between system components, for example, from the third-party
management service to data movers, in order to authenticate and authorize users and to initiate streaming. The data
channel provides the link between the source and destination of the data being transferred. This split-channel model is
beneficial when scientific data are located on specialized storage systems, accessible only via dedicated data transfer
nodes (DTNs) [21] to which users do not have direct access, allowing for separation of control and data messages in
this context [14].

2.2 Transfer Management

While servers connected to storage are the workhorses for data movement, the clients that drive data transfers play
a critical role in determining transfer performance and reliability. The client needs to provide all parameters for any
transfer, including the security credential(s) to be used, network usage levels (e.g., number of concurrent connections),
and integrity and privacy levels. The configuration of these parameters by the client, as part of the request that it issues
to servers to transfer files, has significant impact on transfer performance. Moreover, while the GridFTP protocol is
built to support reliable transfers, the onus falls on the client to track the information sent back from the servers on how
much data has been moved and to request restarts when needed to ensure a complete transfer. Similarly, any failures,
including those resulting from integrity checks performed upon completion of a file transfer, are returned to the client;
it is up to the client application to request that data be re-transferred in that situation. This management task is yet
more complex in the case of transfers that include recursive transfers of directories, as the client then needs to expand
directories and track progress at a per-file level in order to ensure that all files and folders are moved.

These difficulties provide further motivation for third-party transfer services such as Globus [15] and PhEDEX[51],
as they enable clients to outsource such complexities to a third party. The cloud-hosted Globus transfer service, for
example, implements a simple REST API for requesting transfers. The Globus service achieves efficiency by combining
information on the files that need to be moved and the capacity at source and destination to determine performance
parameters. It also provides reliability by tracking transfer progress and retrying on faults, and negotiates the security
needed to navigate transfers between sites. By thus providing a fire-and-forget solution for users, it delivers significant
usability benefits.

The Connector storage abstraction layer thus has two roles: (1) to enable efficient access to data stored on a variety
of different storage systems and (2) to support the operation of managed transfer applications such as Globus so that
they can achieve secure, performant, and reliable transfers across diverse combinations of such systems. The latter
role requires specialized capabilities, such as enabling a third party to establish their identity and authority to make a
request to the storage system; request that a transfer be initiated; enable encryption; monitor transfer progress; and
detect errors and termination; request checksums.
Manuscript submitted to ACM
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3 A UNIFORM STORAGE INTERFACE: FROM DSI TO CONNECTOR

Allcock et al. [3]’s original DSI was designed to provide a uniform data storage interface for the various file systems
and data management systems found in research institutions, including in addition to Posix, HPSS [34], Xrootd [24],
and iRODS [49]. It was intended primarily for use by the open source Globus implementation of GridFTP, which when
transferring data between two storage systems would use the appropriate DSI implementation at each end. A DSI
implementation accepted requests such as stat, send, and recv and performed these functions by using the appropriate
APIs of the storage system with which it interfaced. DSI consists of several function signatures and a set of semantics.
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Application
(e.g., Data Transfer tool)

Tape

Lustre,
GPFS,
etc.

HPSS

Sync
Storage

Cloud
Storage

POSIX

Fig. 1. The Connector abstraction.

Continued advances and diversification in network bandwidth and data storing/management techniques, such as
object stores, cloud-based storage services, and conventional parallel file systems, led to the original DSI design being
no longer able to handle efficiently the many different data store/retrieval APIs and authentication methods. Subsequent
extensions to the original DSI to support modern authentication methods, handle certain limitations of cloud storage
APIs (such as call quotas), incorporation of automatic retries and fault-tolerant capabilities, and additional management
capabilities, produced what we refer to here as the Connector abstraction in Figure 1, as shown in Figure 2 and detailed
in §4. An implementation of this abstraction is created by instantiating the various Connector functions, which an
application program (GridFTP in our case) can then use to establish a new storage access session, read data from the
storage system and send it to the application, receive data from the application and write it to the storage system, and
so forth. Various of these functions themselves use callbacks (upcalls [19]) to the application program for such purposes
as determining desired concurrency and buffer sizes, determining which data to send (including partial ranges due to
restarts), and signalling completion of write operations so that the application can generate performance records and
restart markers.

Applications can load and switch Connectors at runtime. When the application requires action from the storage
system (e.g., store/retrieve data or metadata, directory creation), it passes a request to the loaded Connector module.
The Connector then services that request and notifies the application when it is finished.
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The first Connector developed by the Globus team was for POSIX-compliant file systems. Since then, researchers
around the world have implemented others, some in collaboration with the Globus team and some independently.
Examples include HPSS [32], iRODS [8], StoRM [55], SDQuery [56], Xrootd [24], Swift [45], and MAPFS [48].

4 GLOBUS CONNECT SERVER ARCHITECTURE AND CONNECTOR IMPLEMENTATION

Rapid growth in both the use of the Globus service and the variety of available cloud and other storage resources has
created the need for additional Connectors. We introduce here six Connectors that are integrated into the Globus
Connect Server (GCS) implementation [43], and for which we will provide performance data in later sections. GCS uses
the Connector abstraction and interface for all interactions secure with storage systems and includes key capabilities
such as security protocols needed by the storage system, management of security credentials or tokens, limit and
throttling policy management, and the key IO access to the storage system. Figure 2 shows the authentication flow
required to make a Connector work with Globus.

Data Transfer Node

GCS Manager

GridFTP
with

Connector

Username/
Password

S3 Access Key

Google Refresh
Token

Google.com

POSIX, Ceph, Box

  Amazon S3

Google Cloud Storage,
Google Drive

End User Browser

Credential

Storage System

Get/Put

Fig. 2. Data and authentication flow of Connector.

Every storage blob requires that a credential be registered with the endpoint’s GCS Manager service via its REST API.
The credentials are never sent via the hosted Globus transfer service; instead, they are sent directly from the user’s client
(browser or command line client) to the GCS server. When the storage blob is accessed, the credential is read from the
GCS Manager by the GridFTP server and passed to the Connector. For POSIX, Box, and Ceph connectors, the credential
is simply the local username to which the user’s login identity is mapped. For AWS S3, it is a user-submitted S3 Access
Key ID and Secret Key, and for Google Drive and Google Cloud Storage, it is a token that is sent to the GCS Manager
directly by Google after the user completes the Google OAuth2 login. Note that this caching of credentials is an important
advantage of the GCS approach over that taken by non-persistent GridFTP clients such as globus-url-copy [3], which
musst pass through credentials with each request. In the rest of this section, we briefly introduce the cloud stores to
which we apply our performance modeling-based evaluation method of Connector in the next section.

Amazon Simple Storage Service (AWS-S3) is a service offered by Amazon Web Services (AWS) that provides object
storage through a web service interface.
Manuscript submitted to ACM
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Wasabi [62], an enterprise-class, tier-free cloud storage service, provides an S3-compliant interface to use with
storage applications, gateways, and other platforms.

Google-Drive is a file storage and synchronization service developed by Google. G Suite [30], a suite of cloud
computing, productivity and collaboration tools, software, and products developed by Google Cloud, is widely used by
education institutions, with which users have significant storage allocations within Google Drive. It also is being used
as second-tier storage for research data. Connector helps in handling certain limitations of the Google Drive API (such
as call quotas) through automatic retries and fault-tolerant capabilities in Globus transfer service.

Ceph [63], an open-source software storage platform, delivers object, block, and file storage in one unified system. It
is based on Reliable Autonomic Distributed Object Store, which distributes objects across a cluster of storage nodes
and replicates objects for fault tolerance. Ceph decouples data and metadata. Object Storage Devices store data, and
Metadata Servers stores metadata, with metadata distributed dynamically among multiple Metadata Servers.

box.com provides a service similar to Google-Drive. Its growing use in universities and national laboratories for
research data motivated the development of a Box Connector, which enables bridging to other storage and, as with
Google Drive, handles limitations of the native API.

Google-Cloud storage, like AWS-S3, is a RESTful file storage web service for storing and accessing data on Google
Cloud Platform infrastructure. Its service specifications make it more suitable than Google-Drive for enterprise use.
Its growing use for research data motivated the implementation of a Google-Cloud Connector, which is being used to
move data between Google-Cloud and research institute storage and between AWS-S3 and Google-Cloud.

5 PERFORMANCE MODELING-BASED OVERHEAD EVALUATION

One way to evaluate a data transfer tool is via exhaustive enumeration of many different environments and scenarios.
However, this approach can easily consume a great many resources. Liu et al. observe that per-file transfer start-up
costs are the performance killer when transferring many small files between science facilities [39], and that science
workloads often, unfortunately, involve many small files [43]. We describe here a performance model that captures
these per-file startup costs, and present experiments that allow us to measure indirectly those costs when a cloud
Connector is involved in a transfer. It is important to note that both the model and experiments are designed purposely
for measuring the per-file startup cost from the perspective of the data transfer tool. This cost depends only on the
endpoints involved in a transfer, the network that connects those endpoints, and the transfer service: it is agnostic
to file size and dataset characteristics (we conduct experiments in §5.5 to verify this claim). Thus the per-file startup
costs that we measure with the proposed method are directly transferable to other transfers with different file size
and dataset characteristics, as long as the same endpoints are involved. The throughput analysis in §6 confirms this
statement. All experiment source code, test-beds environment setup instructions and experiment result analysis code
are available at https://github.com/ramsesproject/dsi.

5.1 Colocated and Proxy Connector Scenarios

A Connector is usually colocated with the storage system to which it provides access so that it can combine efficient
network communications (via GridFTP [3, 37]) with efficient storage system access (via native storage system APIs).
As we will see, this colocated connector model is usually the most efficient means of accessing cloud storage systems.
However, not all cloud storage systems allow for the deployment of a Connector immediately adjacent to cloud storage.
Thus, we sometimes need to use a proxy connector model, which a Connector deployed at some remote location employs
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Conn-Proxy
(e.g., POSIX)

Conn-Colocated
(e.g., GCS, S3)

Cloud provider

Cloud VM

Data flow
Control flow

Globus
Service

WAN

Research institution

Fig. 3. The colocated connector scenario, in which the Connector (Conn-Colocated) that interacts with a cloud storage
service is deployed in the same cloud. This scenario is used in AWS-S3 and Google-Cloud.

remote access protocols provided by the cloud storage system for access. Figures 3 and 4 illustrate the colocated and
proxy connector models, respectively.

In the experiments for which we report results below, we use the proxy connector model for cloud storage systems
that do not permit the colocation of a Connector with cloud storage: Wasabi, box.com and Ceph. In these cases, the
proxy connector uses cloud storage-provided remote access protocols to access the cloud storage. For AWS-S3 and
Google-Cloud, we leverage their cloud computing capabilities to deploy Connectors adjacent to the cloud storage
(specifically, within the same cloud provider region). Here, cloud storage (AWS-S3 or Google-Cloud) APIs are used only
for local data access and GridFTP is used to move data over the wide area network. In the experiments presented below,
we also compare the performance that can be achieved for AWS-S3 or Google-Cloud with the proxy and colocated
models.

z Conn-Proxy
(e.g., POSIX)

Conn-Proxy
(e.g., Box, S3)

Cloud
Storage

LAN or
loopback

Data flow
Control flow

Globus
Service

Research institution

WAN

Fig. 4. The proxy connector scenario, inwhich a Connector (Conn-Colocated) that interacts with a cloud storage service is
deployed remotely from the cloud provider, for example at the same location as another Connector (Conn-Proxy), to/from
which transfers are to occur.
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5.2 Analysis of Experiment Results

5.2.1 Regression analysis. This statistical process enables estimation of the relationship between a dependent variable
(e.g., data movement performance) and one or more independent variables (e.g., file sizes). Consider the model function

𝑦 = 𝛼 + 𝛽𝑥, (1)

which describes a line with slope 𝛽 and y-intercept 𝛼 . This relationship may not hold exactly for the largely unobserved
population of values of the independent and dependent variables; we call the unobserved deviations from this equation
the errors. Suppose we observe 𝑛 data pairs and call them (𝑥𝑖 , 𝑦𝑖 ), 𝑖 = 1, . . . 𝑛. We describe the underlying relationship
between 𝑦𝑖 and 𝑥𝑖 involving the error term 𝜖𝑖 by

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜖𝑖 . (2)

We then estimate 𝛼 and 𝛽 by solving the following minimization problem:

min
𝛼,𝛽

𝑄(𝛼, 𝛽), for 𝑄(𝛼, 𝛽) =
𝑛∑
𝑖=1

(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖 )2 . (3)

5.2.2 Performance model. We consider the transfer of multiple files sequentially between two endpoints. We assume
that each file introduces a fixed file startup cost 𝑡0 [39], and that the end-to-end theoretical throughput (the minimum of
source read, network, and destination write throughputs, as studied by Liu et al. [40]), is R. Then the time T to transfer
N files totaling B bytes when transferring the N files one by one is

𝑇 = 𝑁 × 𝑡0 +
𝐵

𝑅
+ 𝑆0, (4)

where 𝑆0 is a transfer startup cost in seconds, to be measured in §5.4. 𝑆0 will typically be lower for two-party transfers
but higher for third-party transfers, due to the need in the latter context for coordination between transfer client,
transfer service, and source and destination servers.

We can combine Equations 3 and 4 by setting 𝛼 = 𝐵
𝑅
+ 𝑆0 and 𝛽 = 𝑡0 to estimate indirectly the per-file startup cost, 𝑡0.

Since 𝑆0 is typically a constant value, 𝛼 will be inversely proportional for large 𝐵 to 𝑅, the end-to-end throughput, and
will thus reflect the network use efficiency, namely, how fast the network can transfer one single large file. A smaller
𝛼 in the fitted model corresponds to a more efficient system.

5.2.3 Pearson correlation. This coefficient [10], 𝜌 (𝑥,𝑦), is a measure of the linear correlation between variables 𝑥 and
𝑦. It has a value between +1 and −1, where 1 is total positive linear correlation, 0 is no linear correlation, and −1 is total
negative linear correlation. It is calculated by:

𝜌 (𝑥,𝑦) = cov (𝑥,𝑦)
𝜎𝑥𝜎𝑦

, (5)

where cov (𝑥,𝑦) = 𝐸
[
(𝑋 − 𝜇𝑥 )(𝑌 − 𝜇𝑦 )

]
is the co-variance of variables 𝑥 and 𝑦, and 𝜎𝑥 and 𝜎𝑦 denote the standard

deviation of 𝑥 and 𝑦, respectively.
We performed experiments to verify the model of Equation 4, by checking whether measured 𝑇 and 𝑁 values have a

strong linear relationship, and to estimate the overhead (i.e., 𝑡0) of a file indirectly. We then used Pearson correlation to
quantify the linear relation between data transfer time, t, and number of files, f, in datasets that total to the same total
size across multiple experiments. Table 1 presents the correlation coefficient between data transfer time and number of
files for transfers to and from the six storage systems using Connector (deployed locally and at cloud if applicable) as
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well as native API. We see that the coefficients are close to 1 for all cases, indicating a strong linear relation between
transfer time and number of files. Thus we can use Equation 4 as a performance model for data transfers to/from all six
storage systems and use regression analysis to resolve the model parameters.

In all experiments, we kept the total dataset size fixed but varied the number of files. We chose the total dataset size
to keep the experiment time long enough to mitigate transfer service startup cost (i.e., per-transfer overhead) but short
enough to reduce the influence of fluctuating storage and network load [41]. To this end, we used a 5 GB dataset for
Wasabi, AWS-S3, and Google-Cloud and a 1 GB dataset for Google-Drive and box.com, considering their difference
in peak end-to-end performance. Without loss of generality, we split each dataset into 𝑁 ∈ {50, 100, 200, 400, 600, 800,
1000} equal-sized files. It is important to note that this is a purposely designed experiment to indirectly measure the
per-file overhead and transfer service efficiency.

We moved the dataset using both the appropriate Connector and the service providers’ native APIs, optimized by
the provider for reading/writing from/to the storage service, and then used the regression analysis methods described
above to build a performance model for both the Connector and the native API. To mitigate the influence of external
load on the cloud and network, we repeated each experiment until the change in average transfer time of all repetitions
is less than 5%.

Table 1. Correlation coefficient, 𝜌 (𝑡,𝑓 ) , between transfer time t, and number of files, f, to and from different storage
systems using the native API and Connector deployed locally (at a science institution) and at the cloud (where applicable).

Transfer Direction Connector-Proxy Connector-cloud Native-API
To AWS-S3 0.999 0.973 0.995
From AWS-S3 0.989 0.993 0.989
To Wasabi 0.999 N/A 0.998
From Wasabi 0.997 N/A 0.998
To Google-Cloud 0.997 0.999 0.993
From Google-Cloud 0.999 0.996 0.992
To Google-Drive 0.994 N/A 0.992
From Google-Drive 0.989 N/A 0.995
To Ceph 0.996 0.999 0.999
From Ceph 0.986 0.994 0.976
To box.com 0.998 N/A 0.999
From box.com 0.996 N/A 0.998

5.3 Results and Discussion

We performed the following experiments without Globus integrity checking [15, 16]. Globus integrity check detects any
data corruption that occurred during transmission over the network and/or while writing data to the destination storage
by reading the data at the destination (after it was written to the storage), computing the checksum, and verifying it with
the source checksum. In practice, integrity checking is of vital importance for storage-to-storage transfers [17, 43, 54].
See §7 for more discussion of the importance and performance impacts of integrity checks.

We use the following abbreviations and terminology in figures throughput the paper.

• Exp: An experimental measurement.
• Mdl: A predicted value using the proposed performance model.
• Conn: An abbreviation for Connector.
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• -Colocated: A suffix indicating a Connector deployed within the cloud provider that operates a cloud storage
service (i.e., on AWS for S3 or Google Cloud VM for Google-Cloud), as illustrated in Figure 3.

• -Proxy: A suffix indicating a Connector deployed externally to the cloud provider, locally in a science institution,
as illustrated in Figure 4.

• API: A native cloud storage application programming interface provided by a cloud service provider.

5.3.1 Amazon S3. We used the boto3 [12] Python interface to AWS to download data from and to upload data to
AWS-S3 buckets, and compared its performance with that of AWS-Connector. Figure 5 shows experimental results
and performance model predictions. When uploading from local (i.e., locally at science institution, the same for all
experiments in this manuscript) to AWS-S3, Conn-Proxy performs worse than native API; Conn-Colocated has less
per-file overhead but lower throughput than the native API has. Thus, Connector can outperform native API when
transferring many small files, where per-file overhead become significant. For downloads from AWS-S3 to a POSIX file
system, the per-file overhead trend is similar to that for uploads, but AWS-Connector efficiency is worse when compare
with native APIs, leading to worse performance when downloading large files.
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Fig. 5. Elapsed time vs. number of files for a 5 GB transfer between a POSIX file system and AWS-S3. Conn-Colocated: The
AWS-Connector is deployed in AWS near the S3 bucket (Figure 3); Conn-Proxy: the AWS-Connector is deployed remotely
from AWS-S3, near the POSIX Connector (Figure 4).

5.3.2 Wasabi. Wasabi provides an S3-compliant interface to use with storage applications, gateways, and other
platforms. We used APIs from boto3 (the same API used for AWS-S3) as the native tool to download from and upload to
Wasabi buckets, and we compared its performance with the Wasabi connector.

Figure 6 presents the regression analysis results for both upload to and download from Wasabi using boto3 and the
Globus Wasabi connector. We see from Figure 6 that the native tool and the Connector have similar per-file overheads
for both download from, and upload to, Wasabi. In terms of average throughput achieved, the Connector is slightly
slower for uploads and slightly faster for downloads. Overall, we conclude that the Connector performs worse than
the native tool when uploading many large files, but is comparable to the native tool when transferring many small
files, a common use case in practice. Note that this experiment was designed to measure per-file overhead, which
can be mitigated by using either high concurrency or prefetching, as studied by Liu et al. [39]. We study throughput
performance in §6.
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Fig. 6. Elapsed time vs. number of files for a 5 GB transfer between a POSIX file system and remote Wasabi.

5.3.3 Google Cloud Storage. Google Cloud also provides native APIs [29] for upload to, and download from, a storage
bucket. These APIs behave similarly to the boto3 that we used for AWS-S3 and Wasabi; we can authenticate once and
reuse the credential to transfer all files sequentially for the regression analysis.
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Fig. 7. Elapsed time vs. number of files for a 5 GB transfer between a POSIX file system and remote Google-Cloud storage.
Conn-Colocated: The Connector used to access cloud storage is deployed in the Google Cloud near the storage bucket
(Figure 3); Conn-Proxy: The Connector used to access cloud storage is deployed remotely from Google-Cloud, near the
POSIX Connector (Figure 4).

Figure 7 compares experimental results and fitted performance models. We see that a proxy deployment of Connector
used to access cloud storage incurs much higher per-file startup costs (the first term in the equations in the figures)
than when using the native API, in both data movement directions. However, as modeled in Equation 4, the Connector
has much higher efficiency (the second term in the equations in the figures). In other words, the Connector performs
better than the API when transferring a few big files but worse when transferring many small files.

Figure 7 also contrasts the performance achieved with the colocated and proxy deployment models. In the colocated
model, when the Connector is deployed near the storage bucket on a Google Cloud VM (and thus GridFTP, optimized
for WAN data movement, is used for WAN transfer, and the API is used only within the cloud, namely, to move data
between the Cloud VM and storage bucket within the same data center), the per-file overhead of Connector is slightly
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worse than that of the API for upload but better than the API for download, thanks to GridFTP WAN data movement
optimizations [3]. Again, the Connector achieves much higher efficiency than does the native API. These results reveal
that if the Connector is deployed near the storage bucket, it will perform better than the native API, if the network
bandwidth is not the bottleneck.

5.3.4 Google Drive. Transfers to and from Google-Drive are significantly slower than for the other cloud storage
services studied, achieving a transfer rate that is only about 1/6 of that achieved with Google-Cloud. Thus, to optimize
experiment times and to minimize the influence of external load on our experiments, we used datasets totaling 1 GB,
rather than 5 GB as for other Connectors, for our regression analysis experiments.

As Google-Drive does not support deployment of a Connector adjacent to cloud storage, our experiments (see
Figure 8) compare only the proxy scenario and the Google-Drive API. We see that these two approaches perform
similarly for uploads, while tor downloads, GoogleDrive-Connector introduces a little more per-file overhead than
does the native APIs, but achieves higher network use efficiencies. Thus, it achieves similar performance to that of the
native API for big files, but underperforms for smaller files.
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Fig. 8. Elapsed time vs. number of files for a 1 GB transfer between a POSIX file system and remote Google-Drive

5.3.5 Ceph. Similarly to our evaluation for AWS-Connector and GoogleCloud-Connector, we consider two deploy-
ment scenarios for Ceph-Connector: (1) close to the Ceph storage system (referred to as cloud) and (2) near to the
storage system from which transfers to/from Ceph are performed (referred to as local).

Figure 9 compares the performance model and actual experiment measurement. We see that, as in the case of
AWS-Connector and GoogleCloud-Connector, the Connector incurs much lower per-file overheads when deployed
near to Ceph. That is mostly because in that scenario, GridFTP is used for wide-area data transport, and GridFTP allows
moving data out-of-order, leading to better efficiency.

5.3.6 Box.com. As we did for evaluating other Connectors, here again we used native APIs (here, those provided by
the Box SDK [13]) to move data between box.com and local storage in order to compare Box and the Connector. From
the experimental measurements in Figure 10, we observe that Box.com-Connector and the native API have similar
per-file overheads.
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Fig. 9. Elapsed time vs. number of files for a 5 GB transfer between a POSIX file system and remote Ceph cloud storage.
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Fig. 10. Elapsed time vs. number of files for a 1 GB transfer between a POSIX file system and remote box.com

5.4 Transfer Startup Cost

Equation 4 includes, for each transfer, a startup cost of 𝑆0. This cost varies according to the transfer method used. If a
user logs in to a cloud service and initiates a two-party transfer directly, the cost may be relatively low. In the case of a
cloud-hosted third-party transfer service such as Globus, it will be higher. To measure this cost in different contexts, we
designed an experiment that transfers a single file of different sizes. Thus, the performance model is

𝑇 = 𝐵 ∗ 𝑡𝑢 + 𝑆0, (6)

where 𝐵 is the size of the single file in GB and 𝑡𝑢 is the time to transfer 1 GB. To resolve 𝑆0, we transfer a single file
with 𝐵 ∈{1, 3, . . . , 17, 19} GB from a POSIX file system to a remote cloud store (in this case, Wasabi), and fit the resulting
runtimes to Equation 6. Figure 11 shows the relation between 𝐵 and T. We see a strong linear relationship between
𝐵 and T and a transfer startup cost of 2.3 seconds, which is negligible in most cases except where one transfers a
particularly small amount of data in a particularly high-throughput environment.
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Fig. 11. Transfer time vs. single-file dataset size for upload to Wasabi: Globus Connector third-party and API two-party.

5.5 Further experiments with different transfer size

In order to prove that the proposed performance model and experiments are agnostic to transfer size, we conducted
experiments in a production Box.com-Connector at Argonne National Laboratory (different as it used for Figure 10
which was a test-bed using a personnel box.com account) using different transfer size range from 1 GB to 9 GB (instead
of 2GB/5GB used in the above reported experiments). Figure 12 and Table 2 showed the results. As one can see, the
model is agnostic to the size of dataset used for experiments. The indirectly measured per-file startup cost remains
consistent (we believe the slight variance is caused by noise because of the shared environment for experiments) in
different transfer size.
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Fig. 12. Elapsed time vs. number of files for different dataset size (1 GB, ..., 9 GB) transferred between a POSIX file system
and Box.com-Connector.

6 THROUGHPUT ANALYSIS

Based on the investigation of per-file overhead, we see that datasets with big files are more friendly to transfer tools [39].
Here, we used the most friendly datasets to benchmark the best transfer performance using different concurrency levels.
Specifically, in order to use a concurrency of 𝑐𝑐 with a Connector, we initiated a transfer with 𝑐𝑐 files, each of size 1 GB.
When a native API was used, we initiated 𝑐𝑐 threads to transfer 𝑐𝑐 files concurrently. In practice, aggregated throughput
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Table 2. Performance model fitted using experiment with different transfer size, for performance model verification.

Transfer-Size

Direction Performance Model

Upload Download

1 GB 0.3415𝑁 + 12.62 0.1655𝑁 + 20.14

3 GB 0.3651𝑁 + 58.58 0.1799𝑁 + 31.00

5 GB 0.3484𝑁 + 93.07 0.1759𝑁 + 51.26

7 GB 0.3615𝑁 + 126.7 0.1699𝑁 + 70.24

9 GB 0.3416𝑁 + 176.2 0.1534𝑁 + 96.71

first increases quickly with concurrency and eventually drops slowly, because of local contention. As noted in previous
studies [7, 42, 67], there is no one-size-fits-all setting for concurrency. Thus, for all experiments in this section, we
increased concurrency until we see negative benefit.

6.1 Wasabi

Figure 13 compares the S3 Connector and Wasabi API. We see that transferring multiple files concurrently does
help to some extent by overlapping the per-file overhead. As for throughput, as evaluated in the preceding section,
Wasabi-Connector achieves performance similar to that of the native API does.
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Fig. 13. Transfer performance as a function of concurrency: Globus Connector third-party and Wasabi two-party API

6.2 AWS S3

Figure 14 shows transfer performance between a POSIX Connector and AWS S3 as a function of concurrency used.
We see that uploads to AWS S3 are consistently faster via the AWS API than via AWS-Connector, while for downloads
the reverse is true. Furthermore, the Connector performance is consistently better when on AWS rather than local.
We attribute the superior download performance of AWS-Connector to its use of the wide-area-network-optimized
GridFTP, which for example allows out-of-order transmissions. Thus, AWS-Connector can extract data from S3 as fast
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as S3 will allow via local area network (within AWS region) and transmit them in parallel (out-of-order if needed) over
the wide area network using GridFTP.
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Fig. 14. Transfer performance as a function of concurrency

For downloads, the limitation seems to be the network performance of the AWS EC2 instance on which the
AWS-Connector is located. The m5.8xlarge instance (32 vCPU, 128 GB RAM) that we used to host AWS-Connector
on AWS is supposed to deliver 10 Gbps external network performance. However, an iperf test with 16 parallel TCP
streams from the AWS instance to a DTN associated with the POSIX Connector showed only 4.7 Gbps (i.e., downloads
in Figure 14b).

6.3 Google Cloud Storage

Figure 15 shows transfer performance as a function of concurrency used. In the Conn-Colocated case, the Connector
runs on a Google Cloud virtual machine instance with 32 vCPU and 128GB RAM that is close to the Google-Cloud
bucket. We used iperf with 16 parallel TCP streams to measure network bandwidth between the POSIX Connector

DTN and the VM instance on Google Cloud; we achieved 4 Gbps from Google Cloud to the DTN (i.e., download) and
7.3 Gbps from the DTN to the Google Cloud instance (i.e., upload). Since the data will not go through this VM instance
when using the native API, native API transfers are not limited by the above mentioned peak iperf throughput values
(which are likely limited by the VM’s network). Thus, it is not fair to compare the throughput achieved by the API
with that of the throughput achieved by Connector when the throughput achieved by the API is above the peak iperf

measurements. We see in Figure 15a that the Connector upload performance is consistently better than that of the
native API.

In the download case, since the VM’s network egress bandwidth is only 4 Gbps, the comparison after achieving
4 Gbps (there are protocol overheads in practice) does not make sense. However, in those experiment that are not
limited by network bandwidth (i.e., when concurrency is less than 5), the Connector clearly performs better than API,
with the cloud-placed Connector (Conn-Colocated) performing better than the locally placed connector (Conn-Proxy).
These results are in line with our regression analysis in §5.3.3.

6.4 Ceph

Depending on context, the Ceph-Connector may be deployed in either colocated or proxy mode. Here we conduct
experiments to measure Ceph-Connector throughput and to compare with native APIs. We work with a Ceph system
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Fig. 15. Transfer (upload to and download from Google-Cloud) performance as a function of concurrency

deployed on a bare metal node at the University of Chicago site of the NSF Chameleon cloud [36], and experimented with
two Ceph-Connectors in two locations: one adjacent to the Ceph storage in Chicago and one at the Texas Advanced
Computing Center (TACC). Since the data channel of Ceph-Connector uses the S3 protocol, we compared it against
using boto3 to access Ceph. Figure 16 compares the performance of the two Ceph-Connector deployments with that
of the native API (i.e., boto3). Ceph-Connector always get the best performance when deployed near the Ceph system,
thanks to the optimized data movement over WAN delivered by GridFTP[3].
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Fig. 16. Transfer (upload to and download from Ceph) performance as a function of concurrency

6.5 Inter-cloud Transfers

The ability to transfer files directly from one cloud store to another, instead of downloading and re-uploading files
to and from an intermediate point, such as a user’s workstation, can be a major boost to researcher productivity. In
addition to increasing performance, the fire-and-forget nature of third-party transfer increases reliability and eliminates
the need to maintain an intermediate node running for the duration of the transfer from one cloud to another.

6.5.1 Connector cross-cloud performance. Globus logs show that moving data between AWS-S3 and Google-Cloud

is a common use case. We first evaluated performance for moving data between cloud providers. Figure 17 shows
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performance vs. concurrency when moving data between AWS-S3 and Google-Cloud using Connector. Since there is
no straightforward or automated way to do cross-cloud transfers using the native cloud storage APIs, we benchmark
the performance of Connector alone to determine best practice for cross-cloud transfers (more on best practices in §8).
An iperf3 network speed test with 16 parallel TCP streams between the AWS VM and Google Cloud VM achieved about
4.5 Gbps in each direction. Thus, as shown in Figure 17a, Connector can reach peak throughput when the Connector
is deployed at the cloud provider (i.e., one Connector on AWS to access – read or write depends on transfer direction –
AWS-S3 and the other on Google Cloud to access Google Cloud Storage service). If deployed locally, however, they
achieve only about half of the performance, a reduction that we attribute to network connectivity among AWS, Google
Cloud, and a POSIX Connector at a science institution.
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(a) Colocated connector: Connector is hosted in the cloud provider.

1 2 3 4 5 6 7 8 9 10 11
Concurrency

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
 (G

bp
s) AWS-to-Google

Google-to-AWS

(b) Proxy connector: Connector is operated remote from the cloud provider.

Fig. 17. Transfer performance between AWS-S3 and Google-Cloud vs. concurrency, for (a) colocated and (b) proxy con-
nector models.

6.5.2 Transfer agent comparisons: Globus vs. MultCloud. We also compare the cloud-to-cloud performance achieved
when using Connector (via the Globus managed transfer service) with that achieved by MultCloud [46], another service
that allows users to request managed third-party transfers between different cloud storage services. We show results in
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Figure 18 for transfers between Google-Drive, box.com and AWS-S3. In comparing performance, we used our analysis
of file size characteristics [43] to select a test dataset of 50 files totaling 1 GB. Since the free trial version of MultCloud
only supports transferring files one by one, we also set concurrency to one for the Globus Connectors used for the
experiment. We run both Connector on nodes provided by the Argonne-located Chameleon system, and thus in the
Globus case, all data transferred from cloud 𝐴 to cloud 𝐵 passes via Argonne. (Cloud-based Connectors would give
better performance.) We see in Figure 18 that the Connector outperforms MultCloud in all cases.
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Fig. 18. Throughput comparison: MultCloud vs. Globus

7 INTEGRITY CHECKING

It is good practice to perform integrity checking on files transferred over wide area networks because factors such as
faulty routers and file systems can cause silent data corruption [17, 43, 54]. The 16-bit TCP checksum is inadequate
to catch network transmission errors, and other errors can occur when accessing storage. Indeed, a recent study [43]
reported at least one checksum failure per 1.26 TB moved from storage to storage over a wide area network. While
this number is likely an over-estimate, as it does not distinguish between data corruption and cases in which a file is
modified while a transfer is in progress, it emphasizes the importance of integrity checking.

The Connector abstraction interface supports transmission integrity checking via GridFTP [3], which allows a client
to request that a file be read, and a checksum computed, at the source before transmission, and then reread and a
second checksum computed at the destination. The re-read action is not required when the cloud service associates a
checksum/MD5 with the file/object, for example when the file size is less than a certain value. This “strong integrity
checking” approach has the advantage that it can detect not only errors incurred during transport over the network but
also errors incurred while writing data. However, the additional read operations can impact performance, particularly if
a Connector is located remotely from cloud storage. Given the wide variety of storage systems, Connector placement
strategies, and transfer workloads, we cannot provide a complete analysis of integrity checking costs. However, we
present some relevant results for high throughout storage systems (where even a small integrity checking overhead can
have a significant influence) in Figures 19–21, for Wasabi, AWS-S3, and Google-Cloud respectively. In each case, the
Connector is located on a computer at Argonne, and the transfer involves 𝑐 300 MB files, where 𝑐 is the concurrency.
We see that transfer rates are lower when integrity checking is enabled, but not remarkably so, given that the file is
being reread over the wide area network after writing. We attribute this result to the fact that sufficient concurrency
can mitigate the overhead of integrity-checking when the DTN’s CPU is not the bottleneck.
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Fig. 19. Transfer (upload to Wasabi) performance, with integrity checking ON versus OFF

1 2 3 4 5 6 7 8 9 10 11
Concurrency

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (G

bp
s) Check-OFF Check-ON

Fig. 20. Transfer (upload to AWS-S3) performance, with integrity checking ON versus OFF
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Fig. 21. Transfer (upload to Google-Cloud) performance, with integrity checking ON versus OFF
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8 BEST PRACTICE

The GridFTP-based Globus transfer service has been heavily optimized for moving data over wide area networks [3, 37].
Here we provide recommendations for Connector deployment when aiming either to maximize throughput or to
minimize costs.

8.1 Throughput Maximization

Best practice for throughput maximization when moving data to and from cloud storage is to deploy the corresponding
Connector near the cloud storage service. This means, for example, using a Google Cloud computing instance as a
DTN to run one or more GoogleCloud-Connector and using AWS EC2 instance(s) to run one or more AWS-Connector.
Moreover, the results reported in §6.5.1 show that for inter-cloud transfers, this configuration (deploying Connector near
the cloud storage) can achieve a 100% improvement in throughput compared to the configuration in which Connector

is deployed locally at the users’ site–or at a location that is not closer to the cloud storage. The transfer throughput
achievable in these two cases depends on the size (in terms of vCPUs and memory) of the allocated instance(s). We have
found that two vCPUs and 4 GBmemory are needed to saturate a 10 Gbps network. In order to achieve high performance
with reduced cost, these cloud-hosted DTN instances can adopt an elastic resource allocation approach, increasing
resources allocated to the Connector when demand is high and reducing it at other times [18]. Such cloud-hosted
Connector can be shared by several science institutions that use the same federated authentication mechanism, such
as XSEDE [58].

8.2 Cost Minimization

An alternative deployment approach is to run Connector on computers hosted at science institutions. This approach
does not require any additional hardware, but it means that all accesses to cloud storage involve data transfers with cloud
provider protocols. The results presented earlier in this paper suggest that this approach will lead to little performance
loss for datasets with large files but significant performance loss for datasets with many small files.

Performance-cost calculations may be different when using integrity checking, as discussed in the next section. Since
Connector integrity checking involves rereading a file after writing and since cloud storage providers usually charge
for network usage when data is moved out of the cloud, it is advantageous when integrity checking is enabled to deploy
a cloud storage Connector in the same cloud as the storage.

9 RELATEDWORK

Others have developed implementations of the Globus GridFTP DSI. EUDAT [60] implemented a DSI [8] for the
Integrated Rule-Oriented Data System (iRODS) [49] data management software. Sánchez et al. [53] proposed a parallel
DSI for GridFTP and offered an implementation for the MAPFS [48] parallel file system. A DSI implementation for
OpenStack Object Storage (Swift) is also available [45]. However, no DSI implementation targets cloud stores, and none
provide performance evaluations.

Others have developed uniform interfaces to cloud storage, but by supporting multiple protocols in a client, not a
Connector as proposed here. We described MultCloud in §6.5.2. Rclone [50] is a command line program that offers a
rsync-like tool to synchronize files for cloud storage. It integrates APIs for various cloud stores but does not provide
transfer management functionality. iRODS implements an interface to AWS S3 [61].
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Abramson et al. [1] proposed the Metropolitan Data Caching Infrastructure (MeDiCI) architecture to simplify data
movement between different clouds and a centralized storage site. It is similar to the scenario that we evaluated in
§6.5.1, but MeDiCI is cache-based, targeting on-demand cloud computing.

Liu et al. [39] used regression analysis to measure per-file overhead indirectly, and concluded that the bottleneck
in transferring many small files between HPC facilities is not any single subsystem but rather the per-file overheads
introduced by the major components in wide area file transfers. Deelman et al. [22] have developed similar models. The
benefits of parallel streams for transfer performance are well known [33]. Several researchers have studied the impact
of concurrency, parallelism, and other parameters on GridFTP transfer performance [5–7, 42, 67], for example, based on
historical data [6] or lightweight probing [5].

10 CONCLUSION

We have described and evaluated the architecture and implementation of a unified storage system Connector designed
to permit efficient, reliable, and secure integration of diverse storage systems into a distributed data movement fabric.
By enabling both effective use of third-party transfers and easy plug-and-play integration of different storage system
types, Connector simplifies both the use of those systems and the development of new Connectors. When used in
conjunction with a managed transfer service such as Globus, the Connectors abstraction enables data movement across
various storage systems in a “fire-and-forget" fashion.

We described Connector implementations for a range of storage types, from POSIX file systems to HPC parallel file
systems and cloud object stores. We used a performance-model-based analysis to evaluate Connector implementations,
and employed both experiments and analysis to elucidate implications for design and implementation. We conclude that
the Connector model enables effective use of distributed storage with either just modest performance losses relative to
native APIs, or useful performance improvements, due to the optimization of data movement over wide area networks
delivered by the open source GridFTP.

The methods and results presented here have broad applicability to data movement services such as Globus and
PhEDEx that suport managed third-party transfers. We demonstrate that a performant, uniform Connector interface
can be used to support such services across diverse storage systems, including the growing cloud-based storage service.
Our analysis of the costs associated with colocated vs. proxy Connectors emphasizes the importance of careful design
of external access interfaces for cloud storage.
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