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Abstract

Extreme-scale simulations and experiments can generate large amounts of data, whose volume can exceed
the compute and/or storage capacity at the simulation or experimental facility. With the emergence of
ultra-high-speed networks, researchers are considering pipelined approaches in which data are passed to a
remote facility for analysis. Here we examine an extreme-scale cosmology simulation that, when run on a
large fraction of a leadership computer, generates data at a rate of one petabyte per elapsed day. Writing
those data to disk is inefficient and impractical, and in situ analysis poses its own difficulties. Thus we
implement a pipeline in which data are generated on one supercomputer and then transferred, as they are
generated, to a remote supercomputer for analysis. We use the Swift scripting language to instantiate this
pipeline across Argonne National Laboratory and the National Center for Supercomputing Applications,
which are connected by a 100 Gb/s network; and we demonstrate that by using the Globus transfer service
we can achieve a sustained rate of 93 Gb/s over a 24-hour period, thus attaining our performance goal of
one petabyte moved in 24 hours. This paper describes the methods used and summarizes the lessons learned
in this demonstration.

Keywords: Wide area data transfer, GridF'TP, Large data transfer, Cosmology workflow, Pipeline

1. Introduction

Extreme-scale scientific simulations and experiments can generate much more data than can be stored
and analyzed efficiently at a single site. For example, a single trillion-particle simulation with the Hard-
ware/Hybrid Accelerated Cosmology Code (HACC) [1] generates 20 PiB of raw data (500 snapshots, each
40 TiB), which is more than petascale systems such as the Mira system at the Argonne Leadership Comput-
ing Facility (ALCF) and the Blue Waters system at the National Center for Supercomputing Applications
(NCSA) can store in their file systems. Moreover, as scientific instruments are optimized for specific objec-
tives, both the computational infrastructure and the codes become more specialized as we reach the end of
Moore’s law. For example, one version of the HACC is optimized for the Mira supercomputer, on which it
can scale to millions of cores, while the Blue Waters supercomputer is an excellent system for data analysis,
because of its large memory (1.5 PiB) and 4000+ GPU accelerators. To demonstrate how we overcame
the storage limitations and enabled the coordinated use of these two specialized systems, we conducted a
pipelined remote analysis of HACC simulation data, as shown in Figure 1.

La Petabyte (PiB) = 250 bytes
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Figure 1: Pipelined execution of a cosmology workflow that involves a mix of streaming scenarios, ranging from sustained
~100 Gb/s over a 24-hour period to high-bandwidth bursts during interactive analysis sessions.

Our demonstration at the NCSA booth of SC16 (the International Conference for High Performance
Computing, Networking, Storage, and Analysis in 2016), a state-of-the-art, 29-billion-particle cosmology
simulation combining high spatial and temporal resolution in a large cosmological volume was performed
on Mira at ALCF. As this simulation ran, the Globus [2] transfer service was used to transmit simulation
data to NCSA each of 500 temporal snapshots as it was produced [3]. In total, this workflow moved 1 PiB
in 24 hours from the ALCF to NCSA, requiring an average end-to-end rate of ~93 Gb/s. In this paper,
we describe how we achieved this feat, including the experiments performed to gather insights on tuning
parameters, data organization and the lessons we learned from the demonstration.

As snapshots arrived at NCSA, a first level of data analysis and visualization was performed using
the GPU partition of Blue Waters. We note that the analysis tasks have to be carried out sequentially:
information from the previous time snapshot is captured for the analysis of the next time snapshot in order
to enable detailed tracking of the evolution of structures. The workflow system therefore was carefully
designed to resubmit any unsuccessful analysis job and to wait for an analysis job to finish before starting
the next one. The output data (half the size of the input data) was then sent to the NCSA booth at SC16 to
allow access to and sharing of the resulting data from remote sites. The whole experiment was orchestrated
by the Swift parallel scripting language [4]. In previous simulations, scientists were able to analyze only
~100 snapshots because of infrastructure limitations.

This experiment achieved two objectives never accomplished before: (1) running a state-of-the-art cos-
mology simulation and analyzing all snapshots (currently only one in every five or 10 snapshots is stored or
communicated); and (2) combining two different types of systems (simulation on Mira and data analytics
on Blue Waters) that are geographically distributed and belong to different administrative domains to run
an extreme-scale simulation and analyze the output in a pipelined fashion.

The work presented here is also unique in two other respects. First, while many previous studies have
varied transfer parameters such as concurrency and parallelism in order to improve data transfer perfor-
mance [5, 6, 7], we also demonstrate the value of varying the file size used for data transfer, which provides
additional flexibility for optimization. Second, we demonstrate these methods in the context of dedicated
data transfer nodes and a 100 Gb/s network circuit.

The rest of the paper is organized as follows. In §2 we introduce the science case and the environment in
which we performed these transfers. In §3 we describe the tests to find the optimal transfer parameters. In
84 we summarize the performance of the transfers during the pipelined simulation and analysis experiments,
and we describe our experiences with checksum-enabled transfers. Based on the demo at SC16, we propose
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in §5 an analytical model to identify the optimal file size and show that it can help improve the performance
of checksum-enabled transfers significantly. In §6 we review related work, and in §7 we summarize our work.

2. Science case and demonstration environment

We first present the challenges raised by the science problem and then describe the environment used for
the demonstration.

2.1. Science case

To understand the Universe, cosmologists use large telescopes to conduct observational surveys. These sur-
veys are becoming increasingly complex as telescopes reach deeper into space, mapping out the distributions
of galaxies at farther distances. Cosmological simulations that track the detailed evolution of structure
in the Universe over time are essential for interpreting these surveys. Cosmologists vary the fundamental
physics in the simulations, evaluate resulting measurements in a controlled way, and then predict new phe-
nomena. They also model systematic errors in the data, mimic inaccuracies due to limiting telescope and
sensor artifacts, and determine how these limitations can influence scientific results. In order to achieve
high-quality simulations, high temporal and spatial resolution are critical. Cosmologists need to track the
evolution of small overdensities in detail and follow how they evolve into larger structures. Events early in
the life of such a structure will determine what kind of galaxy it will host later, controlling, for example,
the brightness, color, and morphology of the galaxy. Current (and next-generation) supercomputers (will)
allow them to attain high spatial resolution in large cosmological volumes by simulating trillions of tracer
particles. But the supercomputer on which the simulation is carried out might not be— and usually is not—
the optimal system for data analysis because of storage limitation or supercomputer specialization.

2.2. Demonstration environment

For the demonstration, we ran a large simulation at the ALCF, moved the raw simulation output to NCSA,
and ran an analysis program on the Blue Waters supercomputer. The simulation evolved 30723 (=29 billion)
particles in a simulation box of volume (512h~'Mpc)?. This led to an approximate mass resolution (mass
of individual particles) of mp=3.8¥10% h~'Msun.

Each snapshot holds 1.2 TiB. The source of the data was the GPFS parallel file system on the Mira
supercomputer at Argonne, and the destination was the Lustre parallel file system on the Blue Waters
supercomputer at NCSA. Argonne and NCSA have 12 and 28 data transfer nodes (DTNs) [8], respectively,
dedicated for wide area data transfer. Each DTN runs a Globus GridFTP server. We chose to use Globus
to orchestrate our data transfers in order to get automatic fault recovery and load balancing among the
available GridFTP servers on both ends.

It is clear that wide-area data transfer is central to distributed science. The data transfer time has direct
influence on workflow performance and the transfer throughput estimation is crucial for workflow scheduling
and resource allocation [9].

3. Exploration of tunable parameters

Concurrency, parallelism, and pipelining are three key performance optimization parameters for Globus
GridFTP transfers. These effectiveness of the parameters depends on data transfer node, local storage
system and network. There is not a one-size-fits-all setting that is optimal in any case [10]. Concurrency
and parallelism mechanism are illustrated in Figure 2, and pipelining is illustrated in Figure 3.

3.1. Concurrency

Concurrency uses multiple GridFTP server processes at the source and destination, where each process
transfers a separate file, and thus provides for concurrency at the file system I/O, CPU core, and network
levels.
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Figure 3: Illustration of pipelining in Globus GridFTP.

3.2. Parallelism

Parallelism is a network-level optimization that uses multiple socket connections to transfer chunks of a
file in parallel from a single-source GridFTP server process to a single-destination GridF'TP server process.

3.3. Pipelining

Pipelining speeds lots of tiny files by sending multiple FTP commands to a single GridF'TP server process
without waiting for the first command’s response. This approach reduces latency between file transfers in a
single GridF'TP server process.

Thus, in order to find the best application-tunable parameters, we first arbitrarily fixed the average file
size to be ~4 GiB and evaluated different combinations of three Globus GridFTP parameters: concurrency,
parallelism, and pipeline depth.

Figure 4 shows the achieved throughput as a function of parallelism for different concurrencies and
pipeline depths. Parallelism clearly does not provide any obvious improvement in performance. We con-
jecture that the reason is that the round-trip time between source DTNs and destination DTNs is small
(around 6 ms). Figure 5 shows the achieved throughput as a function of concurrency for different pipeline
depths. We omitted parallelism in this comparison because it does not have much impact (Figure 4).
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Figure 4: Data transfer performance versus parallelism with different concurrency (C) and pipeline depth(D).

From Figure 5, we see that the throughput increases with increasing concurrency, especially for small
pipeline depths. Each DTN at ALCF has only a 10 Gb/s network interface card, and a transfer needs to
use at least 10 DTNs to achieve the desired rate of 1 PiB in a day or sustained ~93 Gb/s. In order for a
transfer to use 10 DTNs, the concurrency has to be at least 10. In order for each DTN to drive close to
10 Gb/s (read data from the storage at 10 Gb/s and send data on the network at the same rate), many (or
all) DTN cores need to be used. In this case, each DTN has 8 cores, and thus a concurrency of at least 96
is needed to use all cores. This explains why a concurrency of 128 gives the highest performance.

We also see in Figure 5 that increasing the pipeline depth reduces performance. The reason is that the
Globus policy was designed for regular data transfers (i.e., transfer size is not as big as in this case, and the
endpoints and network are not as powerful). Specifically, at the time of experiment, Globus doubles pipeline
depth, and splits multi-file transfers into batches of 1,000 files and treats each batch like an independent
transfer request. This policy was put in place to control the total number of concurrent file transfers and thus
the memory load on the servers. For example, if we use a pipeline depth of 8, the maximum concurrency can
only be L%J = 62, which is why concurrency with 64 and 128 achieved the same performance in Figure 5.
After feeding back findings in this paper, Globus has optimized this 1,000 files batch mechanism.

Similarly, when the pipeline depth is 16, the actual concurrency will be L%J = 31, and thus transfers
with concurrency greater than 32 achieve the same performance as those with 32 in Figure 5. Therefore, the
optimal pipeline depth for our use case is 1, because pipelining is good for transferring tiny files (when the
elapsed transfer time for one file is less than the round-trip time between the client and the source endpoint)
but not for larger files.

Although we used Globus transfer service in this work, we believe that our methods and conclusions
are applicable to other wide area data transfers. Because the three tunable parameters: concurrency (i.e.,
equivalent to the number of network and disk I/O threads / processes), parallelism (equivalent to the number
of TCP connections) and pipeline (i.e., the number of control channel) of Globus are generally used by other
high performance data transfer tools such as BBCP [11], FDT [12], dCache [13], FTS [14] and XDD [15].

4. Experiences transferring the data

As mentioned, we split each 1.2 TiB snapshot into 256 files of approximately equal size. We determined
that transferring 64 or 128 files concurrently, with a total of 128 or 256 TCP streams, yielded the maximum
transfer rate. We achieved an average disk-to-disk transfer rate of 92.4 Gb/s (or 1 PiB in 24 hours and
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Figure 5: Data transfer performance versus concurrency for different pipeline depth values.

3 minutes): 99.8% of our goal of 1 PiB in 24 hours, when the end-to-end verification of data integrity in
Globus is disabled. In contrast, when the end-to-end verification of data integrity in Globus is enabled, we
achieved an average transfer rate of only 72 Gb/s (or 1 PiB in 30 hours and 52 minutes).

The Globus approach to checksum verification is motivated by the observations that the 16-bit TCP
checksum is inadequate for detecting data corruption during communication [16, 17] and that corruption
can occur during file system operations [18]. Globus pipelines the transfer and checksum computation; that
is, the checksum computation of the ith file happens in parallel with the transfer of the (i + 1)th file. Data
are read twice at the source storage system (once for transfer and once for checksum) and written once (for
transfer) and read once (for checksum) at the destination storage system. Therefore, in order to achieve the
desired rate of 93 Gb/s for checksum-enabled transfers, in the absence of checksum failures, 186 Gb/s of read
bandwidth from the source storage system and 93 Gb/s write bandwidth and 93 Gb/s of read bandwidth
concurrently from the destination storage system are required. If checksum verification failures occur (i.e.,
one or more files are corrupted during the transfer), even more storage I/O bandwidth, CPU resources, and
network bandwidth are required in order to achieve the desired rate. Figure 6 shows the overall transfer
throughout, as determined via SNMP network monitoring, and the DTN CPU utilization, when performing
transfers using the optimal parameters that we identified.

We see that transfers without integrity checking (marked by dashed line boxes in Figure 6) can sustain
rates close to our environment’s theoretical bandwidth of 100 Gb/s, with little CPU utilization. If integrity
checking is enabled (solid line boxes in Figure 6), however, the CPU utilization increases significantly, and
it is hard to get close to the theoretical bandwidth continuously. We note three points: (1) the network
is not dedicated to this experiment, and so some network bandwidth was unavoidably consumed by other
programs; (2) we used the same optimal tunable parameters (concurrency(128) and parallelism(1)) and the
same file size for transfers with and without checksum in order to make sure that the only difference between
the two cases is data verification; and (3) there are transfers with non-optimal parameters, performed as
part of our explorations, running during other times (outside the boxes) in Figure 6.

4.1. Checksum failures

Globus restarts failed or interrupted transfers from the last checkpoint in order to avoid retransmission costs.
In the case of a checksum error, however, it retransmits the entire erroneous file. About 5% of our transfers
experienced checksum failure. Such failures can be caused by network corruption, source storage error, or
destination storage error. Since the data integrity is verified after the whole file has been transferred to
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the destination, a retransmission must be done if their checksum does not match. For a given transfer, the
number of failure represents the number of retransferred files. Obviously the transfer throughput will go
down if too many failures occur. We show the transfer throughput versus failures in Figure 7.

Assume that a transfer contains N files, each of x bytes, and there are n checksum verification failures.
Thus, n files are retransferred, and the total bytes transferred will then be (N 4+ n)x. If we assume that the
end-to-end throughout is Rese, the actual transfer time T},.s will be

z (N +n)

Ttrs =
ReZe .

(1)
Thus, the effective throughout Ry.s to the transfer users, that is, the time it takes Ti,s seconds to transfer
Nz bytes, will be
& o NRC2C (2)
Tirs N +n.

We note that transfers in Figure 7 have different concurrency, parallelism, pipeline depth, and average
file size; and thus their Reo. are different. If we look only at the transfers with similar concurrency, the
shape in Figure 7 fits well with Equation 2.

Rtrs =

5. Retrospective analysis: A model-based approach to finding the optimal number of files

The ability to control the file size (and thus number of files) in the dataset is a key flexibility in this use case.
Thus, while we used a file size of 4 GB in our experiments, based on limited exploration and intuition, we
realized in retrospect that we could have created a model to identify the optimal file size. Here, we present
follow-up work in which we develop and apply such a model.
In developing a model of file transfer plus checksum costs, we start with a simple linear model of transfer
time for a single file:
Tirs = rsT + btrs, (3)

where a5 is the unit transfer time, b5 the transfer startup cost, and x the file size. Similarly, we model
the time to verify file integrity as
Tk = ack® + by, (4)

where ag, is the unit checksum time, b the checksum startup cost, and z the file size.
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The time to transfer and checksum a file is not the simple sum of these two equations because, as shown
in Figure 8, Globus GridFTP pipelines data transfers and associated checksum computations. Note how the
data transfer and file integrity verification computations overlap. Thus, assuming no file system contention
and that the unit checksum time is less than the unit transfer time (we verified that this is indeed the case
in our environment), the total time T to transfer n files with one GridFTP process, each of size z, is the
time required for N file transfers and one checksum, namely,

T = nTtrs + Tck + bsrvs = n(xatrs + btrs) + zack + bck + bsrvs> (5)

where bgys is the transfer service (Globus in this paper) startup cost (e.g., time to establish the Globus
control channel). Let us now assume that concurrency = cc. S denotes the bytes to be transferred in total;
and we equally divide S bytes into N files, where N is perfectly dividable by ce. Thus there are n = N/cc
files per concurrent transfer (i.e., per GridFTP process), and each file of size x = % The transfer time T’
to the number of files N will be

S N S
T (N) = gatrs + Ebtrs + Nack + bek + bsrvs. (6)
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in our environment and for different concurrency values, ce. Since we previously determined (see Figure 4)
that parallelism makes little difference in our low RTT environment, we fixed parallelism at four in these
experiments. We note that, for other scenarios with long RTT, the best parallelism should be determined
first, e.g., by iteratively exploring parallelism as shown in Figure 4. For each concurrency value, we fixed
S=1.2 TiB, used four measured (N, T) points to fit the four parameters, and then used the resulting
model to predict performance for other values of N. Figure 9 shows our results. Here, the lines are model
predictions, stars are measured values used to fit the model, and other dots are other measured values not
used to fit the model.
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Figure 9: Evaluation of our transfer performance model when transferring a single 1.2 TiB snapshot. Solid markers are points
that were used to fit the model parameters shown in Equation 6.

Figure 9 shows the accuracy of the performance model. We see that our model does a good job of
predicting throughput as a function of N and cc. Since the four model parameters in Equation 6 are
independent of source, network, and destination, at least four experiments are needed to fit the model, after
which the model can be used to determine the best file size to split a simulation snapshot. We conclude
that the optimal file size is around 800 MiB (i.e., split the 1.2 TiB snapshot to 1536-2048 files) and that it
can achieve a throughput of 89.7 Gb/s with integrity verification. This throughput represents an increase
of 25% compared with that obtained with the ad hoc approach, when we used a file size of 4 GB.

6. Related work

Elephant flows such as those considered here have been known to account for over 90% of the bytes transferred
on typical networks [19], making their optimization important.

At the 2009 Supercomputing conference, a multidisciplinary team of researchers from DOE national
laboratories and universities demonstrated the seamless, reliable, and rapid transfer of 10 TiB of Earth
System Grid data [20] from three sources—the Argonne Leadership Computing Facility, Lawrence Livermore
National Laboratory, and National Energy Research Scientific Computing Center. The team achieved a
sustained data rate of 15 Gb/s on a 20 Gb/s network provided by DOE’s ESnet. More important, their work
provided critical feedback on how to deploy, tune, and monitor the middleware used to replicate petascale
climate datasets [21]. Their work clearly showed why supercomputer centers need to install dedicated hosts,
referred to as data transfer nodes, for wide area transfers [8].
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In another SC experiment, this time in 2011, Balman et al. [22] streamed cosmology simulation data
over a 100 Gb/s network to a remote visualization system, obtaining an average performance of 85 Gb/s.
However, data were communicated with a lossy UDP-based protocol.

Many researchers have studied the impact of parameters such as concurrency and parallelism on data
transfer performance [5, 6, 7] and have proposed and evaluated alternative transfer protocols [23, 24, 25]
and implementations [26]. Jung et al. [27] proposed a serverless data movement architecture that bypasses
data transfer nodes, the filesystem stack, and the host system stack and directly moves data from one disk
array controller to another, in order to obtain the highest end-to-end data transfer performance. Newman
et al. [28] summarized the next-generation exascale network integrated architecture project that is designed
to accomplish new levels of network and computing capabilities in support of global science collaborations
through the development of a new class of intelligent, agile networked systems.

Rao et al. [29] studied the performance of TCP variants and their parameters for high-performance trans-
fers over dedicated connections by collecting systematic measurements using physical and emulated dedicated
connections. These experiments revealed important properties such as concave regions and relationships be-
tween dynamics and throughput profiles. Their analyses enable the selection of a high-throughput transport
method and corresponding parameters for a given connection based on round-trip time. Liu et al. [30]
similarly studied UDT [31].

Specifically for bulk wide area data transfer, Liu et al. [32] analyzed millions of Globus [3] data transfers
involving thousands of DTNs that DTN performance has a nonlinear relationship with load. Liu et al. [33]
conducted a systematic examination of a large set of data transfer log data to characterize into transfer
characteristics, including the nature of the datasets transferred, achieved throughput, user behavior, and
resource usage. Their analysis yields new insights that can help design better data transfer tools, optimize
networking and edge resources used for transfers, and improve the performance and experience for end users.
Specifically, their analysis show that most of the datasets as well as individual files transferred are very small;
data corruption is not negligible for large data transfers; the data transfer nodes utilization is low.

7. Conclusion

We have presented our experiences in transferring one petabyte of science data within one day. We first
described the exploration that we performed to identify parameter values that yield maximum performance
for Globus transfers. We then discussed our experiences in transferring data while the data are produced
by the simulation, both with and without end-to-end integrity verification. We achieved 99.8% of our one
petabyte-per-day goal without integrity verification and 78% with integrity verification. We also used a
model-based approach to identify the optimal file size for transfers; the results that suggest that we could
achieve 97% of our goal with integrity verification by choosing the appropriate file size. We believe that our
work serves as a useful lesson in the time-constrained transfer of large datasets.
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