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Abstract—Extracting actionable information rapidly from data pro-
duced by instruments such as the Linac Coherent Light Source (LCLS-II)
and Advanced Photon Source Upgrade (APS-U) is becoming ever more
challenging due to high (up to TB/s) data rates. Conventional physics-
based information retrieval methods are hard-pressed to detect interesting
events fast enough to enable timely focusing on a rare event or correction
of an error. Machine learning (ML) methods that learn cheap surrogate
classifiers present a promising alternative, but can fail catastrophically
when changes in instrument or sample result in degradation in ML
performance. To overcome such difficulties, we present a new data storage
and ML model training architecture designed to organize large volumes
of data and models so that when model degradation is detected, prior
models and/or data can be queried rapidly and a more suitable model
retrieved and fine-tuned for new conditions. We show that our approach
can achieve up to 100x data labelling speedup compared to the current
state-of-the-art, 200x improvement in training speed, and 92x speedup
in-terms of end-to-end model updating time.

I. INTRODUCTION

Data generated by experiments, simulations, and digital twins, and
by machine learning (ML) models derived from those data, are used
on multiple time and distance scales. For example, data from an in-
situ experiment may need to be delivered quasi-instantaneously to an
ML model trainer so that it can rapidly update the digital twin that is
to be used to choose the next experiment [35]. In this setting, it is vital
that we be able to identify and deliver quickly both the best historical
model to use as a basis for the digital twin and, for fine tuning of
that model, the data most relevant to a specific training scenario. Data
and trained models can also have value to other scientists, e.g., when
designing and steering subsequent experiments and to construct and
update other ML models, and thus must also be efficiently accessible
to those other parties. In other words, we want to render large
quantities of scientific data, and also ML models trained on those
data, findable, accessible, interoperable, and reusable (FAIR) [57].
To this end, we propose a new FAIR Data and Model Service
(fairDMS) to provide indexing, publication, enrichment, discovery,
and access of both data and trained ML models used within ML-
based scientific applications.

Experiments conducted at the Advanced Photon Source (APS) and
Linac Coherent Light Source (LCLS) to study rare events, such
as crack initiation and phase transformations, or weak processes
like nonlinear X-ray methods, can generate data at up to TB/s
[19]. An appropriately trained ML model can often extract the
actionable information from such data streams significantly faster
than traditional analytical methods [35–37, 39]. We show in Fig. 1
a representative example of an ML-embedded scientific experiment
workflow. In (1), a scientific experiment or simulation is run with
a particular setting, generating data that are (2) stored for further
analysis. Depending on a decision process (3) that may assess To
extract actionable information at a rapid rate by using AI, the stored
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Fig. 1: An end-to-end scientific application workflow.

data is further (4) annotated by using conventional methods such as
Pseudo-voigt to compute labels [50]. A ML model is (5) trained on
the annotated data, and the newly trained model is (6) deployed for
(7) inference to obtain valuable information, such as peak location
and shape in the case of High Energy X-ray Diffraction Microscopy
(HEDM), from subsequent data. These results are (8, 9) stored and
analyzed by the domain scientist. Based on the information gathered
during this step, the domain scientist (10) updates the experimental
setup or simulation parameters and the cycle continues.

Changes in experiment or simulation parameters can cause varia-
tion in the characteristics of the data generated in (1) that result in
declining ML model performance in (7). In the system demonstrated
in Fig. 1, this problem of deteriorating ML model performance is
addressed by repeating steps (4) and (5) after every experiment.
However, as those latter steps can each take hundreds of seconds,
this approach leads to inefficient use of expensive scientific apparatus,
and hinders tracking of dynamic behaviors.

To illustrate model degradation over time, we show in Fig. 2, in
red, prediction error for an ML model trained on data generated in
the first phase of a HEDM experiment, i.e., up to scan 402. The
resulting model performs effectively until scan 444, after which its
performance starts to deteriorate due to sample deformation. While
such deformations are familiar phenomena in HEDM experiments,
the researcher typically does not know, in realtime, when they will
occur and thus cannot plan ahead.

Thus we want methods that will allow for rapid updates to ML
models at the time of model degradation. The rapid model update
problem is in fact three distinct problems: a) determining when model
performance degrades, and thus model updating is needed; b) gener-
ating labels for the new data produced in step (1) of Fig. 1, and c)
retraining/updating the model. The last task, model retraining, can be
accelerated significantly by the use of purpose-built AI systems [35],
but the first two tasks are more difficult. We propose in this paper
new methods that address these challenges by first, detecting when
model performance degrades; second, identifying data from previous
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Fig. 2: Prediction error and uncertainty quantification for a
ML model trained with data generated in the early stages
of a HEDM experiment. X-axis: Sequence of data acquisition
(equivalent to elapsed experiment time). Left y-axis: Prediction
error. Right y-axis: 95% confidence bound, quantified by using
MC Dropout [26].

experiments that can be reused to reduce labeling efforts (pseudo-
labeling, handled by our FAIR data service, fairDS); and third, for
finding a suitable model, from a Zoo of models trained for previous
experiments, as a foundation to fine-tune with new data to improve
its performance: our FAIR model service, fairMS.

A. The FairDS Data Service

Scientific experiments can generate large quantities of data, but
those data are commonly not well labeled. Existing scientific image
repositories (e.g., TomoBank [20], digital rocks portal [45], PSI
public data repository [52], the Materials Data Facility [11]) typi-
cally rely on human-supplied annotations to enable navigation via
exogenous (e.g., namespace- or metadata-based) queries [20, 45, 52].
However, although human-supplied annotation makes data indexing
and querying easy, it dos not scale, discourages data contributions,
and can lead to biased labels.

A key novelty of our proposed FAIR data service, fairDS,
is its focus on fully automated feature extraction via the use of
(self-)supervised and unsupervised approaches to transform bulky,
redundant image representations into compact, semantic-rich repre-
sentations of visually salient characteristics. As we will show, this
transformation permits subsequent rapid data discovery and retrieval
(e.g., of images) based on proximity within compact feature spaces—
a capability that we argue is essential for today’s data-intensive
and ML-based workflows, but is under-served by traditional data
management systems.

B. The FairMS Model service

When one is given a ML task, such as using a new labeled dataset
of X-ray diffraction images to construct a predictor of Bragg peak
locations, we might reasonably decide to use the new dataset to train
a new network (e.g., a deep neural network, DNN) from scratch [39].
However, the millions of parameters in typical DNNs can easily result
in overfitting—particularly when the new training dataset is small.
An alternative approach can then be considered. In many settings,
the new dataset is not dramatically different from datasets previously
generated for the same or similar experiments, and thus models
previously trained on those previous datasets have already learned
features relevant to the new dataset. Thus, we can apply a technique
called fine tuning, in which we unfreeze all or part of a previous
model and re-train it on the new data (e.g., using a much smaller
learning rate). More specifically, we start with a network trained on a
large historic dataset that we then fine-tune repeatedly as a succession
of smaller datasets are acquired during an experiment. This approach
can potentially achieve meaningful improvements, by incrementally
adapting the pre-trained features to the new data.

Researchers have previously developed data management solutions
for ML training workloads [46, 47, 55], methods for labeling training
data [9] and quantifying similarity between data points with self-
supervised learning methods [10, 28, 56], and model recommendation
systems [34]. However, to the best of our knowledge, no existing
framework addresses the problems of training data management,
automatic data lookup, and model recommendation under a single
platform. In this work we aim to address the challenges related to
training ML models for in-situ actionable information retrieval for
scientific applications that generate high volume and velocity data.

C. FairDS + FairMS = FairDMS

To this end, we propose an end-to-end framework, fairDMS,
that is composed of a fairDS component that uses representation
learning to generate robust and efficient data labels and a fairMS
component that indexes trained ML models, by a learnt representation
of the training dataset, to recommend the best model as a foundation
for efficient fine-tuning (i.e., fine tuning with rapid convergence) for
ML model training. Our main contributions are as follows:

• A data management system, fairDS, that leverages historical
data through self-supervised learning for pseudo-labeling high
velocity scientific data to reduce the data engineering efforts,
and human agent feedback during the scientific experiments.

• An autonomous model indexing and recommendation system
that takes the user data as an input and recommends an ML
model, from a Zoo of models trained in the past for datasets of
the similar experiment, as a foundation for fine-tuning to reduce
the model training time.

• We further implemented our rapid ML model training system
and evaluated the performance using three representative scien-
tific datasets and two different scientific applications.

The remainder of the paper is organized as follows: In §II we
introduce the fairDMS architecture and describe its modules and
their functionality. We further evaluate fairDMS performance in
§III, and in §IV we discuss its limitations. Finally, we review the
current state of the art in §V and conclude in §VI.

II. KEY INSIGHTS AND CONTRIBUTIONS

Fig. 3: Architecture and building blocks of the data manage-
ment and service platform.

We summarize in Figs. 3 and 4 the internal architectures of
the fairDS and fairMS building blocks, respectively, that we
use to construct our fairDMS, and show in Fig. 5 the end-to-end
architecture of the fairDMS system. In the following, we describe
the key functions and features of each module and discuss how each
contributes towards the successful implementation of fairDMS.

A. Data Management and Service Platform

We have noted that a major challenge when applying an ML model
to data from a high-rate scientific experiment is that as experimental
conditions change, new data can become dissimilar to the data used
for model training, in which model predictions become suspect. The
obvious solution is to retrain the ML model on new labeled data. And
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indeed we have new data, from recent experiments. However, we do
not have labels and the only way that we have of generating accurate
labels for new data, namely running physics-based computational
procedures, is expensive.

The fairDS component of fairDMS aims to enable an alternative
solution to this problem of obtaining labeled data in which instead
of labeling new data we find similar, already labeled data from past
experiments. To this end, we apply a form of content-based data
retrieval [32], an approach to searching large image collections based
on similarity to sample images.

One approach to retrieving labeled historical data that are similar
to unlabeled input data would be to perform pixel-by-pixel intensity
vector comparisons of image pairs with a distance metric such as
Nearest Neighbour—also referred to as instance discrimination [14].
However, this approach is both fragile (e.g., it is sensitive to the
location of individual pixels and cannot easily identify similar but
translated, scaled, or rotated images) and expensive (its computational
cost scales linearly with the size of the database). To overcome
these challenges, we instead use self-supervised learning methods to
generate compact representations (embeddings) of individual images
and then unsupervised clustering methods to group samples with
similar representations into a specified number of clusters: see Fig. 3.
Once these methods have been applied to historical data, it is
straightforward to take new, unlabeled data as input, compute its
embedding, and retrieve a group of similar historical data based upon
the embedding.

ML algorithms for self-supervised learning of compact embeddings
are used widely for extracting key features of input data that represent
discrete variables as continuous vectors [29, 31]. The key idea is
that not all pixels in an image provide important information hence,
only the most relevant features should be extracted for comparison
to find the similar data. Self-supervised representation learning is
generally formulated as learning an embedding (i.e., a feature vector
for each sample) such that images that are semantically similar are
close in embedding space, while semantically different ones are far
apart. The goal is to generate an embedding of the images that
solve the “pretext” task and are also generalizable for other unseen
samples. Various representation learning algorithms are discussed in
§V. Depending on specific application and data, different algorithms
can be used for fairDS.

The low-dimensional feature representation generated by the em-
bedding module enables to capture the most important features of the
input image without the involvement of a human agent. In addition,
the smaller size of the embedding representation relative to the
original experimental data reduces computational costs during the
lookup operation. A third advantage is that it allows fairDS to find
similar labeled images even when subject to various transformations,
such as shifting, rotations, and mirroring.

Having computing embeddings, the Clustering module takes the
low dimension representation of each sample as an input and further
assigns each input into a cluster by using a clustering algorithm so
as to enable two-level hierarchical search (i.e., first find the cluster,
then find the most similar sample within the cluster). We use K-
means clustering [23] for the experiments performed in this study due
to its scalability and fast convergence compared to other clustering
algorithms. The k-means clustering algorithm stores the input samples
as points in the feature space and further calculates the distance using
normalized Euclidean distance between K cluster centers so as to
assign each sample to a nearest cluster center. A challenge when using
K-means clustering is selecting an appropriate number of clusters
K. We employ the elbow method [59] to select K for a specific

applications and dataset automatically. This method is based on the
observation that for a particular application and dataset, as the number
of clusters increases the Within-cluster-Sum of Squared errors (WSS)
inevitably decreases, but at a rate that diminishes for the optimal
number of clusters. We use the YellowBrick [6] library for optimizing
the value of K in an automatic fashion.

Data Store: Once the input dataset has been transformed by
the Embedding Module and assigned to clusters by the Clustering
Module, fairDS generates a cluster probability distribution function
(PDF) for the input dataset, i.e, the probability that images belong to a
certain cluster. Then, fairDS queries the data store, which contains
the labeled historical data, along with embedding information of each
sample and its respective cluster ID. The data store takes the PDF
of the input data and generates from the historical data, a labeled
dataset with similar characteristics to the input data. It returns the
same number of labeled images as are in the input data, selected
randomly from each cluster based on the PDF of the input dataset.

Key requirements for the Data Store module are that it: i) scale
to store large amount of data; ii) provide efficient data look up by
using embedding indexing, in order to minimize the labeling time;
iii) support data updates for adding newly labeled data; iv) support
parallel reads during the training phase; and v) allow parallel writes
during the data update phase. Keeping these characteristics in mind,
we adopt MongoDB [3] as the fairDS data store solution. Mon-
goDB, an open source NoSQL database that offers high availability
and scalability, supports both vertical and horizontal scaling. It stores
unstructured or semi-structured data in JSON-like documents with
optional schema. It also supports efficient data updates and reading
via indexing [4].

In summary, fairDS first employs an efficient data indexing
mechanism to generate an optimized storage layout for historical
labeled data. Next, it provides high degrees of parallelism for fast
data access to minimize the I/O overhead during model training. It
further minimize labeling time by building data indexes as data are
written to storage. fairDS enables robust labeled data lookup for a
given unlabeled datum, from the historical data.

B. Model Management and Service Platform

Over time, fairMS accumulates many instances of the same
model architecture, each trained on different training data: what we
refer to below as a Zoo of models. Any of these models can be fine
tuned with new data to obtain a fine-tuned model. We discuss here
how fairMS enables model recommendations for fine-tuning that
reduce both training time and resource consumption. The key idea
is to use the learned distribution of the training dataset to index a
trained ML model.

Fine tuning [22, 30] and transfer learning [22, 44] are widely used
in ML. The key idea is that when faced with the task of determining
parameters P for a model M that generate accurate predictions for a
new dataset D, it can be far more efficient to use a fine-tuning process
to adjust the parameters P ′ obtained when M was previously trained
on another dataset D′, rather than training M from scratch on D. If
D′ (and thus P ′) are appropriately chosen, the fine-tuning process
can converge to good parameters P far faster, and with the use of
many fewer resources, than if M was trained from scratch.

A challenge when seeking to apply these methods in scientific
applications is identifying the proper model to be used as the foun-
dation. Simply choosing a model at random, even when trained with
data from the same experiment, may not result in any improvement
in training time (see discussion in Fig. 13 and Fig. 14). Hence, it is
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necessary to create meaningful representations for each model in the
Zoo so as to index them properly.

Fig. 4: Architecture and building blocks of the model manage-
ment and service platform.

Fig. 4 illustrates the model management service and its associated
modules. With an input dataset as key, fairMS first uses fairDS to
determine its distribution representation as a PDF. It then compares
this distribution with that of each training dataset in the model Zoo,
via Jensen–Shannon divergence [25], so as to identify the model that
was trained with the training dataset closest to the input dataset. This
model is return as the foundation model to be used for fine-tuning.
We evaluate the effectiveness of this approach to model retrieval for
fine tuning in §III-F.

Next, we discuss the functionality of the Model Zoo and Model
manager components of the fairMS. The Model Zoo is responsible
for managing all models that have previously been trained with the
various datasets generated in past experiments. In order to enable
selection of appropriate models for fine-tuning, Model Zoo tracks for
each such model its training data distribution (based on our clustering
indexing: see §II-A), as shown in Fig. 4. This data distribution
information allows fairMS to find the best model for fine-tuning
without a need to run any model inference.

The Model Manager takes the distribution (as generated by
fairDS) for a new user-supplied dataset as input and calculates the
similarity, using Jensen–Shannon divergence (JSD) [25], between this
data distribution and the distribution recorded for each model in the
Zoo. The JSD, a principled divergence measure between two proba-
bility distributions (also known as information radius), quantifies the
similarity among two or more distributions. Its value is bounded by 0
and 1 for two probability distributions, with 0 indicating completely
similar distributions and 1 indicating orthogonal distributions.

C. Rapid Model Training Workflow

The gradient descent method used in deep learning training is
an iterative optimization algorithm that is commonly performed to
convergence: that is, until such time as model error (as evaluated
on test data) no longer declines. Training can start from any training
checkpoint: for example, from a partially trained model (i.e., a model
not trained to convergence) or from a model trained to convergence
on similar data. When fine tuning a previous trained model on new
data, a key figure of merit is how much time and what computational
resources are required for the fine tuning process to converge.

Model convergence time can be impacted by the co-relation
between the new data and the model checkpoint. If the checkpoint
model was trained on data with similar characteristics to the new data,
the training can be expected to converge in fewer iterations than if
its training data were dissimilar [22, 30]. Hence, we use fairMS to

identify the model in the Zoo with a training dataset that is most
similar, by our JSD metric, to the new data that is to be used for
fine tuning. We also apply a user-defined distance threshold: if no
historical model dataset is within that distance of the new dataset, a
model will be trained from scratch.

If a new model is trained, it is both transferred to the user and
added to the model Zoo along with its training dataset distribution.
Hence, the model Zoo can respond with this model in the future if
presented with a similar data distribution.

Fig. 5: fairDMS architecture and building blocks based on
fairDS and fairMS.

Fig. 5 shows how we combine the fairDS and fairMS compo-
nents to construct our rapid model training system. We can usefully
distinguish, when describing this system, between user plane opera-
tions that an end user can execute (or has direct access to)—colored
purple in Fig. 5—and system plane operations that are performed
in the background without the involvement of the end user: colored
yellow in the figure.

The system plane is responsible for keeping the overall system
up to date to support reliable data queries and efficient model
recommendations. Its functions are executed automatically whenever
new labeled data arrives or a new trained model with a new data
distribution is produced. Its key tasks are training the embedding
model, training the clustering algorithm, updating the data store,
verifying the uncertainty quantification of the clustering algorithm,
and updating the index of training datasets associated with models
in the model Zoo.
fairDMS incorporates various built-in Autoencoder [10, 56], con-

trastive learning [14], and BYOL [28] embedding methods. The
user can select one of these algorithms, based on their application
requirements and data specifications, or alternatively incorporate their
own embedding model or algorithm into fairDS by extending
the embedding interface module. The fairDS Training Embedding
module also supports tuning of hyper-parameters such as batch size
and learning rate associated with an embedding module. Once an
appropriate embedding algorithm and hyper-parameters are chosen,
the training embedding module takes all the historical data from
the data store as an input and trains the model for a user-defined
number of epochs. Having trained the embedding model, the resulting
embedding are used to train the clustering model, and the clustering
module is then applied to assign each historical data item to the
appropriate cluster.

The embeddings and clusterings assigned to historical data can be
updated in the data store periodically, triggered for example by spare
resource availability [38] or by uncertainty thresholds associated with
the embedding or clustering models on new data. fairDMS monitors
the uncertainty of the cluster assignment for each input dataset while
servicing each user request. If the input data are assigned to their
respective clusters with high certainty, fairDS simply performs the
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lookup operation from the data store and extracts the labeled data. In
the case of high uncertainty, fairDMS triggers the training encoder
and clustering function with the updated data from the data store. The
intuition behind this step is that high uncertainty is due to staleness of
the encoder and clustering model. We demonstrate the effectiveness
of the uncertainty based trigger method for updating the embedding
and clustering models in Fig. III-I.

The platform backend is also responsible for managing the model
Zoo, a task that tracking all historical models along with the distri-
bution of their respective training data, as discussed in §II-B.

III. EXPERIMENTAL STUDIES

We use two widely used light source data analysis applications
to evaluate the performance of our fairDMS approach and im-
plementation, applying each application to three different datasets.
These applications are innately distinct from traditional industrial
applications with respect to the type and volume of data and the
resulting model complexity.

A. Benchmark Applications

We consider two DNN models of different architecture and size:
CookieNetAE: The CookieBox detector [19] is an angular array

of 16 electron time-of-flight spectrometers. The X-ray shot photo-
ionizes gas molecules in the interaction point, ejecting electrons.
These electrons drift through a series of electrostatic potential plates
in the 16 channels and are then detected by microchannel plates.
This problem becomes difficult when we consider using a circularly
polarized optical laser field in the interaction region and when
the number of detected electrons is low. CookieNetAE is a deep
neural network designed to estimate the energy-angle dependent
probability density function of electron energies for all 16 channels.
The network takes as input a 128×128 image in which each of 128
rows corresponds to an empirical energy histogram, with 128 bins of
1 ev width, for a given CookieBox channel built after the time-energy
mapping; it produces as output an image containing the probability
density of electron energies in each channel [35].

BraggNN: X-ray characterization methods such as HEDM are used
for designing and studying the properties of new materials. A single
HEDM scan contains 1400–3600 frames, generated in 6–15 minutes
today and an expected 50–100 seconds with APS-U [1]. Each scan
contains multiple diffraction peaks, at different positions; analysis is
then needed to determine the center of mass for each diffraction peak,
with sub-pixel accuracy. BraggNN [39] is a deep learning model that
has been shown to predict center of mass locations in a fast and robust
manner compared to conventional pseudo-Voigt peak fitting. Recent
studies have demonstrated that BraggNN can localize the center of
mass 200× faster than conventional methods [39].

B. Benchmark Datasets

We use three datasets of different sizes to evaluate how well
fairDS can store and extract data during different phases of the
ML training cycle.

The BraggPeaks data are from 27 distinct X-ray diffraction
microscopy experiments at APS. We pre-processed the data to split
each 1440×1440 pixel frame into a total of 1,868,228 distinct 15×15
pixel patches, each containing a single Bragg peak.

The CookieBox data are from a computational simulation of the
CookieBox detector. This simulation generates an image in which
each of 128 rows correspond to an empirical energy histogram, with
128 bins of 1 ev width, of a given CookieBox channel built after the
time-energy mapping, for a total of 128×128 8-bit integer pixels.
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Fig. 6: Reading Tomography data from MongoDB hosted re-
motely using Pickle data encoding and H5, for varying batch
size and number of workers.

Tomography: Synchrotron-based X-ray tomography is a nonin-
vasive imaging technique that allows for reconstructing the internal
structure of materials at spatial resolutions ranging from tens of
micrometers to a few nanometers. Although CT experiments at
synchrotrons can collect data at high spatial and temporal resolution,
in-situ or dose-sensitive experiments require shorter exposure times to
capture relevant dynamic phenomena with high temporal resolution
or to avoid sample damage. In such settings, a suitable DNN (e.g.,
TomoGAN [37]) can be used to denoise low-dose images or to
remove reconstruction artifacts from sparse views [7, 36]. In this
dataset, each sample comprises 2048×2048 16-bit integers.

C. Experimental Setup

Our end-to-end workflow uses the Globus Flows service [13] to
orchestrate funcX [12] and Globus transfer [24] tasks, much as
proposed by Liu et al. [35]. We use Globus Flows to define the
end-to-end system flow, funcX as the serverless API for executing
the user and system plane functions for optimal resource allocation,
and Globus transfer to copy experimental data and model between
experimental facility and compute cluster [54].

D. Impact of Storage System

We first examine the impact of storage system on training speed
(i.e., training time per epoch) and I/O time per iteration. We con-
ducted experiments using Network File System (NFS) connected
to the compute node with a 100 Gigabit Ethernet card. MongoDB
also connected to the compute node through a 100 Gigabit Ethernet
card. We evaluate MongoDB performance by using two data libraries,
Blosc [8] and Pickle [5], to serialize the data to MongoDB format.
fairDMS incorporates the PyTorch dataloader to speed up I/O reads
for all experimental settings. The builtin PyTorch dataloader offers
three abstractions: Dataset, Sampler, and DataLoader. Dataset returns
a data item corresponding to a given index. Sampler creates random
permutations of indices in the range of dataset length. Dataloader
fetches one mini-batch worth of indices from the sampler, and adds
these to the index queue. The worker processes of DataLoader
consume these indices, and fetch data items from Dataset. We
extended the Dataloader functionality to read data efficiently from
MongoDB with high parallelism (i.e., fetch using multiple clients) to
hide the overhead of each fetch.

Fig. 6–8 show the per-epoch training times and per-iteration I/O
times for the Tomography, CookieBox, and BraggPeaks datasets,
respectively. Each left-hand subfigure shows the training time per
epoch as a function of batch size with a fixed number of 50 I/O
threads; In the case of the Tomography and CookieBox datasets
(Fig. 6a and Fig. 7a, respectively) we can a trend similar to that seen
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Fig. 7: Reading CookieBox data from MongoDB hosted re-
motely using Pickle data encoding and H5, for varying batch
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in any conventional ML workload, with the epoch time inversely pro-
portional to batch size. We note that different storage configurations
all achieve similar performance, except for the case of batch size
1024 in Fig. 6a, where NFS outperforms both Blosc and Pickle. This
is due to the overhead incurred by deserialization of the training data
from Blosc and Pickle formats.

Each right-hand subfigure shows I/O time per iteration for varying
numbers of concurrent threads reading data from storage (shown on
the x-axis as # workers) a fixed batch size of 512. We can observe
the impact of deserialization in I/O time as a function of workers
concurrently reading training data per iteration as well, which is
demonstrated in Fig. 6b and Fig. 7b, where NFS also outperforms
both Blosc and Pickle. We attribute the lack of improvement in
the I/O time of NFS impacting the epoch time in smaller batch
sizes (i.e., less than 1024) to two reasons. First, the improvement is
only a few hundred milliseconds compared to the computation time
per iteration, which is in the order of tens of seconds. Second, the
PyTorch Dataloader prefetching allows the data to be read into RAM
in parallel with computation. We conclude that for the Tomography
and CookieBox datasets, the choice of storage system does not
significantly impact training performance.

We see similar trends for the Bragg dataset in Fig. 8a. However,
in this case direct reading from NFS improves the training time
per epoch significantly when compared to Blosc and Pickle. This
behaviour variation is due to the large model and dataset sizes of
the Bragg dataset, which is latency-bound due to its size. Thus, there
is no significant variation in NFS I/O time for different numbers
of worker threads reading the data. On the other hand, Blosc and
Pickle demonstrate shorter I/O times when more workers are used for
prefetching, denoting that the cost of fetching data from MongoDB
is higher than that of fetching directly from files, but that this cost
can be mitigated byusing higher parallelism.

We conclude from these experiments that while the use of
MongoDB-based storage has no significant impact on training time
for the Tomography and CookieBox datasets compared with reading
directly from NFS, the rich features provided by MongoDB (e.g.,
inserting, updating, deleting, querying) can significantly reduce the
service and data updating overheads (compared to operating and
managing files directly) when updating the fairDS backend. In the
case of Bragg data we propose to store the historical data in the
MongoDB for the ease of data management. However, prefetching
the training data from MongoDB to NFS (or even a local SSD) in
the beginning would help improve the overall training time.

E. Data Service Validation

We use the BraggNN model and BraggPeaks data to evaluate the
effectiveness of the fairDS in identifying similar data for model
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Fig. 8: Reading Bragg data from MongoDB hosted remotely
using Pickle data encoding and H5, for varying batch size and
number of workers.

training. Specifically, we select an HEDM experimental dataset not
in BraggPeaks, which we denote here as BR, identify a holdout set
BH ∈ BR, and define a threshold T . Then we construct BO as
follows: For each element b ∈ BR \BH , we identify the image p in
BraggPeaks that is closest to b in embedding space, and if |b−p|< T ,
retrieve the label l(p) and add {p, l(p)} to BO; if |b − p|≥ T , we
use the pseudo-Voigt code to compute a label v(b) for b, and add
{b, v(b)} to BO .

We then train the BraggNN model on BR \BH and BO to obtain
two trained models, and compare the prediction errors of the two
resulting models on BH . We see in Fig. 9 that the two models
performed equally well. However, the times spent on labeling were
significantly different; the conventional method needs nearly an hour
while fairDS took less than a minute. We examine end-to-end
performance in terms of labeling time and training time in more
detail in §III-H.

F. Model Service Validation

We evaluate fairMS by using a test dataset that is new to
fairDMS and labelled it by using conventional methods. For each
model in the fairMS Zoo, we: (a) applied the model to each element
in the test dataset, and computed the mean prediction error across all
elements; and (b) computed, as a measure of dataset similarity, the
distance between the data distributions for the test dataset and the
dataset used to train the model. We then use the results of these
computations to study the relationship between prediction error and
dataset similarity.

Fig. 10 and Fig. 11 show scatter plots of model prediction error vs.
JSD distance between the model’s training dataset and the test dataset,
for the BraggNN and CookieNetAE datasets, respectively. In each
figure, the y-axis is the prediction error of the model, and the x-axis
is the JSD distance between the dataset used for training the model
and the input test dataset. Lower values on the y-axis reflect higher
model accuracy, while points further from the x-axis indicate more
different datasets. Therefore, points closer to the x-axis have lower
prediction error (i.e., models with high accuracy), while points closer
to the y-axis have smaller JSD (i.e., the dataset has high similarity).
An ideal model for fine-tuning would have both low JSD distance
and low prediction error. For fairMS to be able to produce an
ideal model, the relationship between model performance and dataset
distance need to be monotonic (possibly with some uncertainty). This
behavior is dependent on the distribution of data used for training
the model. For example, in the case of Fig. 11, we observe generally
monotone behavior because the data used for training the models
changes slightly over time, resulting in a slight degradation of models
over time. On the other hand, in the case of Fig. 10 the variation in
the data is bimodal (i.e, in the early phase of the experiment the
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Fig. 9: Prediction error distribution of BraggNN trained with a
conventionally labeled dataset vs. a historical dataset retrieved
by using fairDS.
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Fig. 10: Prediction error vs. dataset distance for BraggNN on
four different datasets.

configurations are similar, and hence have similar data distributions,
while in the second phase, we see a different data distribution based
on a new configuration).

Even without the perfect monotonic behaviour in Fig. 10 and
Fig. 11 our results demonstrates that fairMS can efficiently meet
these requirements and find the best model for fine tuning. We see
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Fig. 11: Prediction error vs. dataset distance for CookieNetAE
on four different datasets.

in both applications that prediction error and distance are positively
correlated: the model with the smaller distance generally has the
lower prediction error. Therefore, we conclude that fairMS’s dataset
JSD-based model ranking is effective for fine-tuning models for
robust model training.

To further verify and interpret the ranking of models based on
the dataset distribution distance of the input data with the training
dataset, we demonstrate the comparison of best ranked and worst
ranked model data distribution with the input data distribution. Fig. 12
illustrates the data distribution comparison where the x-axis shows the
cluster ID of 15 clusters of the Bragg dataset while y-axis shows the
distribution of each cluster in the input dataset, training data of best
ranked model and training data of worst ranked model represented
by green, gray, and blue bars respectively. We see that both the
input data and the best model follow the same distribution, while
the worst ranked model follows quite a different trend. We note that
there is no data points assigned to cluster 13 for all three model data
distributions.

These results complement those discussed in the previous section,
where we observed that the best ranked model has the smallest JSD
value. Next, we evaluate the enhancements in training speed that
result from the use of the fine tuning approach with the best, median,
and worst recommended model vs. a model trained from randomly
initialized model parameters (i.e., re-trained from scratch).
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Fig. 12: Data distribution comparison of input dataset vs. train-
ing dataset distribution of best ranked model and worst ranked
model.

G. Rapid DNN Training with fairDMS

We evaluate the effectiveness of fairDMS by comparing the end-
to-end time required to update a ML model with a given (unlabeled)
dataset. In these experiments we demonstrate how fairMS can
recommend the best ML model from the Zoo for fine-tuning that
leads to significant improvements in training time. We compare the
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time required to train the recommended model to convergence with
that required for the median ranked model, the worst ranked model,
and a model with randomly initialized parameters.
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Fig. 13: Learning curve of different training strategies for Cook-
ieNetAE on four different datasets.

Figs. 13 and 14 compare validation loss as a function of number
of training epochs for a model trained from scratch (Retrain) and for
the Best, Median, and Worst model recommendations by fairDMS
(denoted as FineTune-B, FineTune-M, FineTune-W, respectively) for
the BraggNN and CooikeNetAE datasets, respectively. We see that for
both BraggNN and CooikeNetAE the optimal model recommendation
by fairDMS for fine tuning (FineTune-B) always reaches conver-
gence within the first few epochs, performing consistently better
than the median and worst model recommendations. Training from
scratch (Retrain) always converges slowly due to randomly initialized
model parameters. We note that in the case of CooikeNetAE (in
Fig. 13), FineTune-M and FineTune-W take the same number of
epochs to converge. This is due to the training data distribution
similarity of both these models. This behavior is also observed in
BraggNN (Fig. 14) where FineTune-B and FineTune-M demonstrate
similar performance. We would expect to see more pronounced
differences in convergence times in situations with greater diversity
in training datasets, as might arise, for example, when using fairDS
at a beamline with a greater diversity of training configurations and
samples. Nevertheless, these results demonstrate how fairDS allows
fairDMS to calculate effectively the data distribution of the input
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Fig. 14: Learning curve of different training strategies for Brag-
gNN on four different datasets.

dataset, query labeled data to reduce the data labeling time, and finally
find the best model for fine tuning using fairMS, instead of tuning
a model from scratch.

H. Case Study: Retraining the BraggNN Model

Now that we have validated that fairDMS can accurately label
data and recommend models, we want to examine whether and how
its use can also improve training times when compared to a legacy
approach in which data are labeled using conventional methods and
the ML model is always re-trained from scratch. To this end, we
conduct a case study involving retraining of the BraggNN model.

Specifically, we compare the training times observed when two
different workflows (fairDMS and legacy) are applied in an HEDM
experiment that has generated a series of datasets at successive times,
indexed as 0, 1, . . . , 145. We assume that while processing dataset
21, we have determined that the ML model is not longer performing
appropriately, and thus retraining is required before dataset 22. In
the legacy workflow, all data to be used by experiment 22 must
be labeled by using the compute-intensive pseudo-Voigt code, after
which the BraggNN model must be trained from scatch. In the
fairDMS workflow, on the other hand, fairDMS can instead use
the fairDS to retrieve labels for data similar to the step 22 data,
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Fig. 15: Comparison of data labeling time, model training time,
and end-to-end training time in the BraggNN case study.

and then, furthermore, fine tune a historical model recommended by
fairMS instead of training BraggNN from scratch.

We compare the performance achieved by fairDMS with that
of three alternative methods: 1) Retrain: Here we use fairDS for
pseudo-labeling, but always train a model from scratch rather than
using fairMS to identify a previously trained model for fine tuning.
This experiment allows us to quantify the improvements achieved
by fairDS alone. 2) Voigt-80: Here we employ the MIDAS [49]
pseudo-Voigt code to label the experimental data, running on a single
80-core workstation (the most accessible solution) and training from
scratch. This is the method that would conventionally be used in
the absence of fairDMS; it serves as our baseline. 3) Voigt-1440:
Here, we employ the conventional method, but run the MIDAS code
on an 18-node cluster, with a total of 1440 CPU cores—the highest
possible parallelism supported by MIDAS. This experiment provides
a best case comparison for the conventional method.

Fig. 15a compares the labeling times and training times for the
four cases, with the y-axis giving time in seconds using a log
scale. fairDMS and Retrain both take advantage of fairDS, and
hence show the lowest labeling times as they can reuse previously
computed labels. Voigt-80 takes the longest to finish labeling, even
with 80 cores. Voigt-1440 labels faster than Voigt-80, thanks to its
18× greater computing power, but is still slower than the fairDS-
based cases. For training (performed in all cases one NVIDIA V100
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Fig. 16: Uncertainty quantification for the embedding model
and clustering model in fairDS, when run without and with
model updating. The y-axis gives percent confidence, as de-
scribed in the text. The red vertical line denotes the point
at which an update is triggered by our model uncertainty
quantification mechanism.

GPU), fairDMS’s fine tuning approach allows it to converge 200×
faster than the other three methods. This demonstrates that fairMS
can achieve the same model performance 200× faster compared to
existing methods.

Fig. 15b compares the total time taken by each method from when
data arrives at the compute facility to when a trained model is returned
to the user: the sum of the data labeling and model training times.
Overall, the Voigt-80 conventional baseline performs the worst of
the four methods: almost 600× worse than fairDMS. This is due
to both its slow labeling and the fact that it must train from scratch.
fairDMS achieves 92× speedup even relative to Voigt-1440, which
uses 1440 cores concurrently for labeling and the same amount of
training resources. fairDMS is 58× faster than Retrain.

I. Uncertainty Quantification of Learned Representations

In this final study we demonstrate how fairDMS can use uncer-
tainty quantification methods to determine when to retrain a model.
We use a sequence of datasets from HEDM experiments, numbered
0 to 35. We first train our embedding and clustering models (with 15
clusters) by using the first five datasets. Then, for successive datasets,
we calculate the certainty of the clustering algorithm by using fuzzy
k-means [2], with certainty calculated in terms of the percentage of
the dataset that are assigned to their respective cluster with at least
50% confidence.

We show in Fig. 16, as the black line labeled “Before Trigger,”
certainty calculated in this way when the embedding and clustering
models trained on the first five datasets are used for all subsequent
datasets. We also show, as the red line labeled “After Trigger,” the
model certainty observed when fairDMS is configured to trigger the
control plane functionality, and thus retrain the embedding module,
re-train the clustering algorithm, and update the data store, when
certainty drops below 80%. We see that the embedding and clustering
models trained on data from the first five experiments perform
consistently well (the black line) until dataset 23, when we observe
a significant drop in the amount of data being assigned to their
respective clusters, from 97% to below 60%. The retrained model, on
the other hand, consistently assigns the data from different stages of
experiments to their respective clusters with high certainty (the red
line)—demonstrating the ability of fairDMS to adapt to dynamic
experimental conditions and dataset characteristics.

IV. DISCUSSION

We discuss how fairDMS can be employed to achieve the goal
of real-time performance at high-data-rate instruments.

Application: We have reported here on results that demonstrate
fairDMS’s applicability to varying data distributions in several
different experimental set ups. Importantly, fairDMS assumes that
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there will be a correlation between the experimental data collected in
different experimental settings. If data generated and gathered during
various experimental settings do not demonstrate such correlations,
the use of fairDMS may result in sub-par or no improvement in
end-to-end ML model training time.

Generalizability: We used three computer-vision-related appli-
cations from HEDM (at APS and LCLS) to evaluate fairDMS
performance. Similarly, we evaluated the performance in an HPC en-
vironment (Argonne Leadership Computing Facility). In future work
we plan to explore a broader set of machine learning applications that
includes natural language processing and non scientific applications.
We also plan to evaluate performance in a cloud environment and to
further study the scalability of fairDMS.

An example of failure: We initially used an autoencoder to build
embedding for Bragg peaks, as we had previously used successfully
for CookieBox data. However, this approach did not work well for
indexing trained models, primarily because the autoencoder, being
tasked to reconstruct the image from latent variables, proved to be
overly sensitive to pixel-wise differences. BraggNN is concerned only
with finding the center of mass in a supplied image, and two peaks
can be considered as identical from the physics point of view if one is
just a rotation (i.e., augmentation) of the other—a common situation
in diffraction experiments. We thus came up with the BYOL [28]
method which can be trained to be agnostic to augmentations inspired
by physics (e.g., rotation in-variance) and experimental conditions
(e.g., prior of the noise model).

V. RELATED WORK

Our work in fairDMS relates to the fields of representation
learning, storage of ML training data, transfer learning, and trained
model indexing and recommendation. We highlight here the state-of-
the-art in each field and compare and contrast with fairDMS.

Self-supervised learning is a powerful method for learning useful
representations without supervision from labels that can greatly
reduce the performance gap between supervised models on vari-
ous downstream vision tasks. Self-supervised representation learning
methods are being widely adopted due to their effectiveness in a
wide variety of applications, such as relative patch prediction [21],
solving jigsaw puzzles [43], colorization [60], and rotation prediction
[14, 15, 27].

Some early work in unsupervised learning from images aimed to
discover object categories by using hand-crafted features and various
forms of clustering (e.g., for learning a generative model over bags
of visual words [48, 51]). More recent and widely used autonomic
algorithms for feature representations include denoising autoencoders
[10, 56], sparse autoencoders [33], and skip-gram models [41]. Many
related methods rely on contrastive learning (e.g., SimCLR [14],
MoCO [17]), which learns representations by maximizing agreement
between differently augmented views of the same data example. In
particular, this technique contrasts positive pairs against negative pairs
and minimizes differences between positive pairs to avoid collapsing
solutions [53, 58]. Another recent line of work (e.g., BYOL [28],
SimSiam [16]) employs asymmetry of the learning update (stop-
gradient operation) to avoid trivial solutions. We employ these
methods in fairDMS for efficient pseudo-labelling of input data.

State-of-the-art storage systems (e.g., Diesel [55], TableFS [46],
DeltaFS [61], IndexFS [47]) make extensive use of metadata to
improve throughput. These systems employ caching to improve the
throughput of distributed file system during the training process
using metadata information. This research has focused primarily on
reducing I/O bottlenecks during the distributed ML model training

phase. The goal of fairDMS is different. To manage ever-growing
training data that are generated at ultra-high speeds from scientific
experiments, we need a specialized system for data management that
provides fast lookup by using a specialised indexing mechanism.

From the ML systems prospective, fairDMS is closely related to
continuous training systems in which models are trained continuously
to deal with dynamically evolving datasets generated during scientific
experiments. Liu et al. [35] proposed an end-to-end ML system for
scientific applications. In serial crystallography [40, 42], Bragg spots
from past experiments are used to train detectors continuously for
use in the current experiment. PtychoNN [18] is proposed for phase
retrieval in ptychography, using data generated in the early stages of
experiments. In all of these frameworks, models are repeatedly trained
from scratch. In contrast, fairDMS leverages historical data through
pseudo-labeling to reduce data annotation costs. The fairMS enables
model updating by fine-tuning of historical models identified by
indexing their training dataset.

VI. CONCLUSION

We have presented a step towards a fully automated ML pipeline
for actionable information retrieval from data generated at high
volume and velocity data sources. Our proposed solution, fairDMS,
is an end-to-end ML framework designed for management of high
velocity scientific data and rapid ML model training. It comprises two
primary components, a data management service platform, fairDS,
and a model management service platform, fairMS, that together
allow it to adapt ML models to new data at greatly reduced cost
relative to conventional methods. It does this by reducing both data
labeling and model retraining times. fairDS leverages specialized
data indexing methods to reduce data annotation time by reusing
annotations generated previously for similar data; in so doing, it over-
comes a major bottleneck in ML model training workflows. fairMS
uses the representation-building functionality of fairDS to identify
previously trained ML models that can serve as a good foundation
for fine-tuning; in so doing, it allows retraining to proceed far more
efficiently than otherwise. Our experiments on two representative
ML-based scientific applications show that fairDMS provides more
than 50x speedup in the worst case and nearly 600x in the best case
on ML model updating.
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