
Toward an Elastic Data Transfer Infrastructure

Joaquin Chung, Zhengchun Liu, Rajkumar Kettimuthu, Ian Foster
Argonne National Laboratory. USA

Email: jchung@mcs.anl.gov, zhengchun.liu@anl.gov, kettimut@mcs.anl.gov, foster@anl.gov

Abstract—Data transfer over wide area networks is an integral
part of many science workflows that must, for example, move
data from scientific facilities to remote resources for analysis,
sharing, and storage. Yet despite continued enhancements in
data transfer infrastructure (DTI), our previous analyses of
approximately 40 billion GridFTP command logs collected over
four years from the Globus transfer service show that data
transfer nodes (DTNs) are idle (i.e., are performing no transfers)
94.3% of the time. On the other hand, we have also observed
periods in which CPU resource scarcity negatively impacts DTN
throughput. Motivated by the opportunity to optimize DTI
performance, we present here an elastic DTI architecture in
which the pool of nodes allocated to DTN activities expands and
shrinks over time, based on demand. Our results show that this
elastic DTI can save up to ∼95% of resources compared with
a typical static DTN deployment, with the median slowdown
incurred remaining close to one for most of the evaluated
scenarios.

I. INTRODUCTION

Science workflows that move large data over wide area net-

works [1] can perform badly on campus networks configured

to protect business systems. The Science DMZ [2] network

design pattern addresses this problem by configuring a portion

of a campus network at or near the campus network perimeter

with equipment, configuration, and security policies opti-

mized for high-speed scientific data transfer. This model has

helped improve data transfer performance for many science

workflows. However, our analyses of ∼40 billion GridFTP

command logs totaling 3.3 exabytes transferred, as well as 4.8

million transfers logs collected by the Globus transfer service

from 2014/1/1 to 2018/1/1, show that much room remains for

improvement in data transfer infrastructure [3].

One limitation of the current Science DMZ model is its

statically provisioned data transfer nodes (DTNs), comput-

ers that are dedicated for wide area data transfers. Many

science workflows are bursty, and thus their computing and

network demands fluctuate significantly over time [4–7]. To

handle these fluctuating demands from different departments

and projects efficiently, university campuses often consolidate

compute resources into an elastic private cloud. We argue that

such an elastic infrastructure is required for data transfers

as well, because statically provisioned DTNs result in either

underutilization of resources or insufficient resources.

We present here the design and implementation of an

elastic data transfer infrastructure (DTI) for a dynamic Science

DMZ that leverages elastic resources for large data transfers.

We evaluated our elastic DTI implementation using Docker

containers, GridFTP, and globus-url-copy. Our results

show that the elastic DTI can save up to 95% of resources

compared with a typical DTN deployment, while the median

slowdown remains close to 1 most of the time. Moreover, half

of all transfers finish faster in the elastic DTI than in the typical

DTN deployment that we used as baseline, as the elastic DTI

is able to assign additional resources to those transfers.

The remainder of this paper is organized as follows. Section

II provides background and motivation. Sections III and IV

describe the architecture and design, respectively. Section V

presents our implementation choices, and Section VI shows

the evaluation results. Section VII summarizes our approach

and its benefits and briefly outlines future work.

II. BACKGROUND AND MOTIVATION

We first provide background on the Science DMZ model

and discuss the limitations of the current Science DMZ model,

which serve as the motivation for our work.

A. Science DMZ

The Science DMZ [2] network design pattern allows re-

search institutions to support high-speed wide area data trans-

fers. Local area networks (LANs) at most institutions are

not designed to support large science data flows. Thus, the

Science DMZ is deployed at the network perimeter, in order

to minimize the number of network devices in the data path to

the wide area network. It engages the following resources [8]:

• Dedicated data transfer nodes (DTNs) with network capa-

bilities that match that of the wide area network (WAN)

and that run high-performance data transfer tools such as

Globus GridFTP [9]

• Performance monitoring hosts with network-monitoring

software such as perfSONAR [10] to conduct both active

and passive network measurements

• Security policies and tools that can be applied specifically

to the science-only traffic

B. Static DTNs, resource wastage, and resource shortage

We previously [3] analyzed GridFTP server usage logs from

about 1,800 DTNs. Working with data from these DTNs for

the year 2017, we marked a DTN as active during a specific

minute if it participated in at least one transfer at some point

during that minute; otherwise we marked it as idle. Figure 1

shows the cumulative distribution of the time that DTNs

are active. Clearly, the percentage of active time is low: on

average, DTNs are completely idle (i.e., no transfers) 94.3%

of the time, and 80% are active less than 6% of the time.

However, some endpoints are heavily used. Figure 2 shows

the aggregate throughput and CPU utilization for a heavily

262

2019 15th International Conference on eScience (eScience)

978-1-7281-2451-3/19/$31.00 ©2019 IEEE
DOI 10.1109/eScience.2019.00036

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on March 28,2021 at 03:10:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Cumulative distribution of idle time percentage: 80%

of DTNs were active less than 6% of the time [3]

Fig. 2: Data transfer throughput vs. DTN CPU usage over

eight days. We highlight two periods in which performance

appears bottlenecked due to inadequate CPU resources [1].

used DTN for an eight-day period. We note that the CPU is

potentially the bottleneck in the two highlighted regions.

Thus DTN resources are grossly underutilized in many cases

but are sometimes insufficient. Both issues can be addressed

by integrating DTN and compute resources and using cloud

technologies to manage both in an elastic manner.

III. ARCHITECTURE

To address the resource wastage and shortage of dedicated

and static DTNs, we propose an elastic data transfer infrastruc-

ture (DTI) that expands and shrinks dynamically to conserve

resources. To realize an elastic DTI in a nondisruptive fashion,

we propose to reserve minimal resources that will work as a

dedicated DTN; we call this a thin dedicated DTN, which is

a minimal resource replica of a regular DTN. Whenever the

load on the elastic DTI increases above a certain threshold,

additional resources will be dynamically allocated from a pool.

Likewise, when the load decreases below a certain threshold,

excess resources will be sent back to pool.

The elastic DTI architecture, shown in Figure 3, is com-

posed of an orchestrator and agents. The orchestrator runs on

the thin dedicated DTN, while agents run on the thin dedicated

DTN as well as on each on-demand DTN.

The orchestrator comprises a statistics collector, which

aggregates utilization measurements taken by the agents in

each DTN; a decision engine, which uses the utilization

statistics to decide whether to (de)provision resources; and a

set of tool-specific modules for making configuration changes

Fig. 3: Elastic DTI architecture

to transfer tools when DTN resources are (de)provisioned (e.g.,

change the endpoint definition in Globus). The orchestrator

interacts with existing resource managers on the campus

cyberinfrastructure through standard APIs.

An agent on each DTN collects resource utilization statis-

tics. Communication between this agent and the statistics

collector on the orchestrator can be implemented via either

a polling or push model. In the former, the orchestrator peri-

odically requests statistics from each agent; in the latter, agents

send measurement updates continuously to the orchestrator.

IV. DESIGN

The architecture proposed in Section III raises many ques-

tions. What type of resources are more suitable for realizing

an elastic DTI, and how do we (de)provision them? When do

we (de)provision these resources? Where do we (de)provision

resources? How do we guarantee correct network connectivity

between the WAN and these resources?

A. Virtualized Infrastructure

The minimal resource unit that can be provisioned dynam-

ically is a core and portion of memory. Virtual machines and

containers [11] can be used to (de)provision resources on

demand. Containers are more attractive because of their short

(de)provisioning times.

Regarding how to (de)provision these resources, two scenar-

ios exist. In scenario (1), the campus already has a virtualized

infrastructure with resource managers such as OpenStack [12],

CloudStack [13], or Kubernetes [14] to serve the needs of their

users. In Scenario (2), no virtualized resources are on campus.

For scenario (1), the orchestrator can (de)provision resources

for on-demand DTN using the appropriate APIs. For scenario

(2), a portion of unused DTN resources can be made available

through a container orchestration layer to scavenger jobs—jobs

that can be killed as and when data transfer load increases.

B. Decision-Making

The question of when to provision or remove resource can

be answered by applying different schemes on the decision

engine. These schemes can be as simple as using thresholds

over a monitored resource usage metric (e.g., CPU utilization)

263

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on March 28,2021 at 03:10:11 UTC from IEEE Xplore. Restrictions apply.

or provisioning a new resource for every new data transfer; or

they can be as complex as decision-making based on machine

learning. A simple static threshold may work in such cases

where the system load does not vary much. However, there is

no “one size fits all” configuration for each of the parameters

because the external load and user behavior change over time

and vary from endpoint to endpoint.

C. Resource Management

High-performance computing resource managers and con-

tainer orchestration systems (e.g., Kubernetes) place a new

resource on a host machine that has sufficient capacity to

meet resource requirements. Usually, this capacity is defined

in terms of available cores and memory, without taking into

account available network bandwidth. For an elastic DTI,

however, available network capacity is crucial. Placing an on-

demand DTN on a network-congested node is counterproduc-

tive. We may be able to extend Kubernetes’ code to take into

account network throughput for where to place a new resource.

D. Dynamic Network Provisioning:

Statically provisioned DTNs reside on the Science DMZ,

close to the WAN perimeter. What is needed for the elastic

DTI is a way to dynamically connect virtualized resources with

the WAN. We propose to reserve a pool of virtual LANs that

connect the perimeter with the elastic DTI and to dynamically

create (or delete) network paths whenever the orchestrator adds

(or removes) a new container. Software-defined networking

(SDN) may help, but we will adopt alternative approaches for

campuses with no SDN support.

E. Design Space

TABLE I: Elastic DTI Design Space
When Where

Usage threshold Available core count
Usage threshold Available network capacity
Upon arrival of new transfer Available core count
Upon arrival of new transfer Available network capacity

Table I shows the design space for our elastic DTI (see

Section V for our implementation choices). Assuming that

existing resource managers can be used to (de)provision

resources, dynamic network paths can be (de)provisioned

with resource, and containers are the minimal resource unit,

our design space is reduced to two dimensions: when and

where to (de)provision. For when, we consider two scenarios:

usage threshold and upon arrival of new transfer. The “usage

threshold” approach follows a time-share model in which one

container can serve many transfers. When usage of the elastic

DTI containers exceeds a threshold, we request more resources

from the resource manager; we remove an active resource

when utilization goes below a low threshold. In the “upon

arrival” approach, we deploy a new container for every new

transfer, and remove the container once the transfer is finished.

For where to (de)provision, we consider the current state of

the art in resource managers (i.e., consider the available core

count) and an enhanced metric that considers the available

network capacity or CPU usage.

V. IMPLEMENTATION

In this section we present our implementation choices for

an elastic DTI. Our orchestrator and agents collect statistics

on CPU usage, network throughput, and active transfers. We

chose Globus GridFTP as our data transfer software because

the extensive logs we had already collected [3] helped us create

traffic traces for the evaluation. We used containers as the type

of resources we can (de)provision and Docker as the campus

resource manager. For this proof of concept, we implemented

the communication between the orchestrator and agents using

a polling model. Section IV presented two scenarios on how to

(de)provision resources. We focus here on scenario 1 because

many campuses are turning to virtualized resources.

We implemented the orchestrator and agents in Python and

the communication between them using gRPC [15]. We also

interact with Docker through a Python library and gRPC com-

munication. The agents collect CPU utilization per container

and network utilization statistics per bare metal server, each

once per second. The orchestrator polls agents every second,

computes thresholds, and decides whether a container needs

to be provisioned or removed.

VI. EVALUATION

We evaluated our architecture in the Chameleon cloud [16]

testbed, which provides bare metal nodes with 48 cores of an

Intel Xeon CPU E5-2670 v3 with 2.30 GHz and 128 GB of

RAM. Four of these bare metal nodes served as the underlay

of our elastic DTI experiments. Our minimal resource unit is

a Docker container with one core and 2.667 GB of RAM.

All containers in the same bare metal node share the same

10 Gigabit Ethernet card. Our evaluations use a trace with

transfers whose characteristics follow that of real datasets

(both file size and dataset size) [3] and whose arrival times

follow a Poisson distribution with λ = 3 seconds.

We evaluated our elastic DTI implementation using the

design space parameters described in Table I (i.e., when and

where to (de)provision). For when to provision, we used

both static thresholds (defined as percentages of average CPU

utilization per container) and provisioning upon arrival of

a new transfer. For where to provision, we used the core

(container) count and network throughput usage of the bare

metal nodes as our metrics. These parameters generate four

possible elastic DTI schemes as shown in Table II.

TABLE II: Elastic DTI Schemes
Scheme When Where

CPU+Count CPU Usage Core count
CPU+Net CPU Usage Network throughput
U.A.+Count Upon arrival of new transfer Core count
U.A.+Net Upon arrival of new transfer Network throughput

We first created a baseline that matches the specifications

of a typical DTN deployment (i.e., 12 cores and 96 GB of

RAM per bare metal node) [17], and ran our trace on it. For

264

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on March 28,2021 at 03:10:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: CPU resources saved vs. typical DTN deployment

our experiments, we measured the cores saving with respect to

the baseline. We also measured the slowdown of each elastic

DTI scheme in terms of transfer completion time. For the static

threshold schemes, we derived four (de)provisioning schemes
defined by a combination of high and low thresholds, and we

used the “HIGH/LOW” notation for naming those schemes.

We kept the low CPU usage threshold at 10% for the first three

schemes and varied the high usage threshold as 30%, 50%, and

70%; for the fourth scheme the low threshold was 20% and

the high threshold was 70%. Although we evaluated the four

main schemes, we do not present the results for U.A.+Net

because this scheme has large slowdowns and it actually uses

∼2X more resources than the baseline does.

Initial results show that at most ∼95% of the CPU core

resources can be saved when compared with a typical DTN

deployment (see Figure 4), with a median slowdown close to

one for most of the threshold-based schemes (see Figure 5).

When using the U.A.+Count scheme, however, CPU savings

reach 20%, with a maximum slowdown close to ∼4.5X.

We infer from Figures 4 and 5 that a tradeoff exists be-

tween increasing the number of resources saved and reducing

slowdown. For instance, when using the CPU+Count 30/10

scheme, the maximum slowdown can be as low as ∼2X, but

the core savings is ∼75%. On the other hand, the CPU+Count

70/20 scheme shows a maximum slowdown as high as ∼5X,

but the core savings is ∼95%. In general, using core count

for where to (de)provision produces better results in terms of

slowdown compared with the network throughput metric. This

may be because lags in the statistics measurement system give

an inaccurate view of the elastic DTI system.

VII. CONCLUSION

The Science DMZ as a network design pattern has had a

notable impact on the science community by improving the

performance of wide area file transfers significantly. Yet it

falls short in efficient utilization of data transfer nodes. We

presented the design, implementation, and initial evaluation of

an elastic data transfer infrastructure that grows and shrinks

based on demand. We realized an instantiation of this elastic

DTI in the National Science Foundation’s Chameleon testbed

70/20 70/10 50/10 30/10 Upon
Arrival

Schemes

0

2

4

6

8

10

12

Sl
ow
do
wn

CPU+Net
CPU+Count

U.A.+Count

Fig. 5: Slowdown for elastic DTI schemes relative to baseline

and showed that up to ∼95% of the CPU resources can

be saved when compared with a typical DTN deployment.

Furthermore, the median slowdown incurred by the elastic DTI

transfers remains close to one for most of the schemes. For

future work, we will further investigate other metrics for when

and where to (de)provision resources. We propose to evaluate

adaptive thresholds for the elastic DTI schemes.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,

Office of Science contract DE-AC02-06CH11357.

REFERENCES

[1] R. Kettimuthu et al., “Transferring a petabyte in a day,” 4th International
Workshop on Innovating the Network for Data Intensive Science, pp. 1–
11, 2017.

[2] J. Crichigno et al., “A comprehensive tutorial on Science DMZ,” IEEE
Communications Surveys & Tutorials, 2018.

[3] Z. Liu et al., “Cross-geography scientific data transfer trends and
user behavior patterns,” in 27th ACM Symposium on High-Performance
Parallel and Distributed Computing. ACM, 2018.

[4] R. F. da Silva et al., “On the use of burst buffers for accelerating
data-intensive scientific workflows,” in 12th Workshop on Workflows in
Support of Large-Scale Science. ACM, 2017, pp. 2:1–2:9.

[5] Z. Liu et al., “A mathematical programming- and simulation-based
framework to evaluate cyberinfrastructure design choices,” in IEEE 13th
International Conference on e-Science, 2017, pp. 148–157.

[6] “Nuclear physics network requirements workshop, 2008,”
http://science.energy.gov/∼/media/ascr/pdf/program-documents/docs/
Np net req workshop.pdf.

[7] Y. Sun et al., “Experience with bursty workflow-driven workloads in
LEAD science gateway,” in TeraGrid Conference, 2008.

[8] K. Chard et al., “The Modern Research Data Portal: A design pattern
for networked, data-intensive science,” PeerJ Computer Science, vol. 4,
p. e144, 2018.

[9] W. Allcock et al., “The Globus striped GridFTP framework and server,”
in ACM/IEEE Conference on Supercomputing. IEEE, 2005, pp. 54–.

[10] B. Tierney et al., “perfSONAR: Instantiating a global network measure-
ment framework,” SOSP Workshop on Real Overlays and Distributed
Systems, 2009.

[11] linuxcontainers.org, “Linux containers,” https://linuxcontainers.org/.
[12] “Openstack,” https://www.openstack.org, accessed: 2018-01-29.
[13] “Apache Cloudstack,” https://cloudstack.apache.org/, accessed: 2018-01-

29.
[14] “Kubernetes - Production Grade Container Orchestration,” https://

kubernetes.io/, accessed: 2019-05-20.
[15] “gRPC,” https://grpc.io/, accessed: 2018-12-14.
[16] “Chameleon Cloud,” https://www.chameleoncloud.org/.
[17] “Data Transfer Node Reference Implementation,” https://fasterdata.

es.net/science-dmz/DTN/reference-implementation/, accessed: 2018-12-
14.

265

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on March 28,2021 at 03:10:11 UTC from IEEE Xplore. Restrictions apply.

