
A mathematical programming- and simulation-based
framework to evaluate cyberinfrastructure design

choices
Zhengchun Liu∗, Rajkumar Kettimuthu∗, Sven Leyffer∗, Prashant Palkar†, and Ian Foster∗‡

∗ Mathematics and Computer Science Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, IL 60439, USA
{zhengchun.liu, kettimut, leyffer, foster}@anl.gov

† Industrial Engineering and Operations Research, Indian Institute of Technology Bombay, Mumbai, MH, India 400076
prashant.palkar@iitb.ac.in

‡ Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

Abstract—Modern scientific experimental facilities such as x-
ray light sources increasingly require on-demand access to large-
scale computing for data analysis, for example to detect experi-
mental errors or to select the next experiment. As the number of
such facilities, the number of instruments at each facility, and the
scale of computational demands all grow, the question arises as to
how to meet these demands most efficiently and cost-effectively.
A single computer per instrument is unlikely to be cost-effective
because of low utilization and high operating costs. A single
national compute facility, on the other hand, introduces a single
point of failure and perhaps excessive communication costs. We
introduce here methods for evaluating these and other potential
design points, such as per-facility computer systems and a
distributed multisite “superfacility.” We use the U.S. Department
of Energy light sources as a use case and build a mixed-integer
programming model and a customizable superfacility simulator
to enable joint optimization of design choices and associated
operational decisions. The methodology and tools provide new
insights into design choices for on-demand computing facilities
for real-time analysis of scientific experiment data. The simulator
can also be used to support facility operations, for example by
simulating the impact of events such as outages.

I. INTRODUCTION

New experimental modalities can generate extremely large
quantities of data. The ability to make effective use of these
new capabilities depends on the linking of data generation
with computation, for example to filter out important results,
identify experimental misconfigurations, or select the next
experiment. X-ray light sources—crucial tools for addressing
grand challenge problems in the life sciences, energy, climate
change, and information technology [1–3]—illustrate these
challenges well. A typical light source facility hosts dozens
of beamlines, each with multiple instruments. Scientists who
run experiments at beamlines want to collect the maximum
information possible about the sample under study in as little
time as possible. The ability to analyze data produced by
detectors in near-real time can enable optimized data collection
schemes, on-the-fly adjustments to experimental parameters,
early detection of and response to errors (saving both beam
time and scientist time), and ultimately improved productiv-
ity [4–10].

At experimental science facilities such as Argonne’s Ad-
vanced Photon Source (APS), data collected at beamline
experiments are typically processed either locally on work-
stations or at a central facility cluster—portions of which may
be dedicated to specific beamlines. Inevitably, demand often
outstrips supply, slowing analysis and/or discouraging the use
of advanced computational methods. In this study, our goal is
to ensure that compute resources are available on-demand to
provide rapid turnaround time, which is crucial to ensure that
data collected are useful and usable. With current state-of-the-
art detectors, many beamlines already struggle to derive useful
feedback rapidly with the locally available dedicated compute
resources. Data rates are projected to increase considerably at
many facilities in the next few years. Therefore, the ability
to use high-performance computing (HPC) will be critical for
these facilities.

Real-time analysis is challenging because of the vast
amounts of generated data that must be analyzed in short
amounts of time. Detector technology is improving at rates
far greater than Moore’s law, and modern detectors can
generate data at multiple gigabytes per second. The com-
putational power required to extract useful information from
these streaming datasets in real time almost always exceeds
the resources available at a beamline. Thus the use of remote
computing facilities for analysis is no longer a luxury but a
necessity.

The use of remote computing facilities for real-time analysis
requires effective and reliable methods for on-demand acquisi-
tion of compute and network resources, efficient data stream-
ing from beamline to compute facility, and analysis at data
generation rates so that timely decisions can be taken. These
tasks are complicated by the potential for competing load from
different experiments. Researchers have performed a variety
of preliminary studies on these problems, including methods
for online analysis of data from microtomography [4, 5], high
energy diffraction microscopy [6, 7], diffuse scattering [8],
continuous motion scan ptychography [9], and linking of
ultrafast three-dimensional x-ray imaging and continuum sim-
ulation [10]. These studies illustrate that users of light source

Published as a conference paper at IEEE eScience 2017



facilities can understand their samples sufficiently during beam
time experiments to adjust the experiment in order to increase
scientific output—if enough CPU and network resources can
be marshaled on demand. But it is far from clear how one
should design a cyberinfrastructure that would allow these sci-
ence workflows to marshal enough CPU and network resources
on demand.

In this work, we develop a framework to evaluate design
choices for such a cyberinfrastructure. Our framework consists
of a mathematical model, an optimization engine, and a dis-
crete event simulator. It allows the users to identify optimal de-
sign choices for a variety of objective functions and constraints
(using the mathematical optimization for a smaller problem
space) and to evaluate how well they will work in practice
(using simulation for a larger problem space). The objective
function could be a combination of constraints (e.g., maximum
processing delay, minimum resource utilization) and scientific
output (e.g., in terms of timeliness of data processing), system
reliability, and system cost. Our framework can be used to
explore interesting tradeoffs.

II. MOTIVATION

Various groups have demonstrated the connection of ex-
perimental facilities with remote supercomputers using high-
speed network connections such as ESnet to process data
from experimental facilities in near-real time [5, 7, 8, 11].
These demonstrations typically involved special arrangements
with compute facility and network operators to obtain the
compute and network resources on demand. But such special
arrangements are not efficient or scalable. Moreover, the batch
queue systems at supercomputers cannot meet the requirement
of these experimental science workflows, which often require
compute resources within minutes or even seconds of data
becoming available.

New approaches are needed to provide the compute re-
sources required by experimental facilities. For example, we
may build resources dedicated for a class of experimental
science workflows (e.g., light source workflows) and schedule
experiments to maximize their utilization. Or, we may add
resources to the existing supercomputers, change scheduling
policies to meet the needs of experimental science workflows,
and share resources with batch jobs. Which approach is better?
In either case, where do we place the new resources? Should
we put all resources in one place or distribute them across the
different sites? If distributed, how do we distribute them? How
much additional network capacity is needed? Other approaches
are also possible: for example, commercial clouds leverage the
law of large numbers and some degree of overprovisioning to
enable immediate scheduling of at least modest-sized tasks.

Our goal is to develop a framework that will support a
wide range of analytical and simulation studies designed to
understand the pros and cons of these different approaches
and the inevitable tradeoffs between cost, performance, and
other factors.

III. THE FRAMEWORK

When designing a cyberinfrastructure that caters to the on-
demand requirements of one or more science communities or
projects, several factors should be considered. One key factor
is flexibility. For example, an experiment schedule that has
some flexibility can be adjusted to minimize the peak demand.
Thus, our framework has a demand optimization component
that uses the flexibility in the demand to optimize the demand.
Finding an optimal design that meets the user requirements
with the least budget would be ideal. Theoretically, one could
use mathematical programming for this purpose, but this is an
NP-complete problem. Mathematical programming also has
other restrictions such as a simplified data transfer model
and ideal scheduling based on a global vision of jobs. Thus,
we include in our framework both mathematical program-
ming and a discrete event simulator, so that mathematical
programming can be applied on a subset of the problem and
the top few most-optimal solutions can be evaluated on the
original (bigger) problem by using simulation (that is closer
to reality) to identify a design that is most promising for a
real-world environment. Figure 1 shows the architecture of
our framework.

A. Mathematical problem description

We are interested in formulating a mixed-integer program-
ming (MIP) model that allows us to schedule jobs from
scientific facilities at HPC resources, taking into account the
network capacities and the resource capacities while ensuring
that slowdown for a given percentile of the jobs is below a
certain threshold. The slowdown for a job is defined as the
ratio of the time length between the start and finish of a job
and the run time of the job.

1) Definition of Sets: We use calligraphic letters to describe
the sets in our mathematical model.
Sites,S, is the set of scientific facilities/sites that create

compute jobs.
Resources,R, is the set of HPC resources where the jobs are

processed.
JobIds, I, is a set of unique job identifiers (we use integers).
Jobs,J , is the set of jobs, where J ⊆ I × S .
Time, T , is the set of (discretized) time intervals (again,

integers for us).
Nodes,N , is the set of network nodes through which traffic

is routed.
Links,L, is the set of links in the network, see Figure 9.
Paths,P(s, r), is the set of (some) paths from site s ∈ S to

resource r ∈ R. Each path is described by a set of links
that connect s to r.

2) Fixed Parameters and Constants: We use the following
parameters in the model. All are defined by using capital
letters.
CreateTime, T 0

js ∈ T , is the time when job (j, s) ∈ J is
created.

NumNodes, Njs, is the number of nodes required to process
a job (j, s) ∈ J .



Mathematical 
programming

Evaluate by simulator 

Framework input Framework output

Analyze simple 
design choices / 
optimize demand

Top k solutions 
(design variables)

The framework

Parameters (e.g. 
arrival time, data size, 
resource demand, network 
topology.)

Revised parameters Constraints
(e.g. utilization, budget.)

Objective 
(e.g. response time)

De
sig

n 
ch

oi
ce

M
et

ric
s

No
de

s 
at

 e
ac

h 
sit

e
Ne

tw
or

k
Re

sp
on

se
 

tim
e

Ut
iliz

at
io

n
B

57
1

80
8

91
9

20
 G

bp
s

4 
m

in
70

 %

A
C

13
42

90
0

79
7

10
 G

bp
s

1 
m

in
50

 %

If not satisfied, Iterate utilization constraint / network bandwidth

Fig. 1: A framework to evaluate cyberinfrastructure design choices.

RunTime, TRjs, is the run time of job (j, s) ∈ J .
DataSize, Djs, is the data size of job (j, s) ∈ J .
Capacity, Ckl, is the maximum capacity of the link (k, l) ∈
L.

ComputeBudget, B, is the maximum compute budget, mea-
sured in number of nodes.

SlowDown, S, is the maximum slowdown for a predefined
percentile of jobs.

Percentile, P, is the percentile of jobs that must have slow-
down within S.

BigM,M, is a sufficiently large constant used for modeling
purposes, defined as follows.

M = max
(j,s)∈J

|T | − T 0
js

TRjs

3) Independent Problem Variables: We are interested in
both sizing the resources and allocating jobs to the resources.
For better readability, we define the sets Tjs = {(T 0

js +
1) . . . (|T | − TRjs)} and T̄js = {(T 0

js) . . . (|T | − TRjs − 1)},
in other words, the set of time periods during which job
(j, s) could run and the data corresponding to it could arrive,
respectively. Next, we introduce the following sets of variables.

cr ≥ 0, an integer, is the maximum design capacity of re-
source r ∈ R.

xjsrt ∈ {0, 1}, a binary variable, is 1 iff job (j, s) ∈ J is sent
to resource r ∈ R at time t ∈ Tjs

λjsrpt : 0 ≤ λjsrpt ≤ 1 is the fraction of the data of job j ∈ I
that is sent from site s ∈ S to resource r ∈ R along path
p ∈ P(s, r) at time t ∈ T̄js.

bkl : 0 ≤ bkl ≤ Ckl is the capacity of the link (k, l) ∈ L.
zjsrp ∈ {0, 1}, a binary variable, is 1 iff job (j, s) ∈ J is sent

from site s ∈ S to resource r ∈ R along path p ∈ P(s, r).
wjs ∈ {0, 1}, a binary variable, is 1 iff job (j, s) ∈ J has a

slowdown ≤ S.

4) Objective Function: The objective is to minimize the
aggregate slowdown in scheduling of jobs.

minimize
c,b,x,λ,z,w

∑
(j,s)∈J

(
∑
r∈R

∑
t∈Tjs t · xjsrt)− T

0
js + TRjs

TRjs
(III.1)

5) Constraints: The constraints fall into three sets: job-
scheduling constraints, network constraints, and slowdown
constraints.

a) Job-Scheduling Constraints: We start by describing
the constraints that model the scheduling of the jobs. The first
constraint states that every job is scheduled.∑

r∈R,t∈Tjs

xjsrt = 1, ∀(j, s) ∈ J (III.2)

Next, we model the compute capacity, cr, for every resource
and at all time instances.∑
(j,s)∈J

Njs
∑

τ∈Tjs:t−TR
js+1≤τ≤t

xjsrτ ≤ cr, ∀r ∈ R,∀t ∈ T

(III.3)
The following constraint limits the total compute budget.∑

r∈R
cr ≤ B (III.4)

b) Network Constraints: The second set of constraints
models the fact that data cannot arrive at the compute resource,
r ∈ R, after the job (j, s) ∈ J has started.∑

p∈P(s,r)

λjsrpt ≤
∑

τ∈Tjs:τ≥(t+1)

xjsrτ ,

∀(j, s) ∈ J , ∀r ∈ R, ∀t ∈ T̄js
(III.5)

Next, we write the capacity constraint for all links.∑
(j,s)∈J

∑
r∈R

∑
p∈P(s,r):(k,l)∈p,

t∈T̄js

Djsλjsrpt ≤ bk,l,

∀(k, l) ∈ L, ∀t ∈ T .

(III.6)



The next two constraints model the fact that data can be
transmitted only on a unique path and only if it is processed
at the target resource. First, we select a path.∑
p∈P(s,r)

zjsrp =
∑
t∈Tjs

xjsrt, ∀(j, s) ∈ J , ∀r ∈ R (III.7)

Then, we constrain the transmission along links that are not
present in the selected path.∑
t∈T̄js

λjsrpt = zjsrp, ∀(j, s) ∈ J , ∀r ∈ R, ∀p ∈ P(s, r)

(III.8)
c) Slowdown Constraints: The third set of constraints

models that at least a fixed percentile, P , of jobs must be
within the slowdown limit, S.∑

(j,s)∈J

wj,s ≥ dP |J |e (III.9)

The following constraint enforces the condition that wjs is 1
for a job (j, s) ∈ J if and only if the slowdown corresponding
to this job is within S.

∑
r∈R,t∈Tjs

t · xjsrt − T 0
js ≤ TRjs(Swjs +M(1− wjs)),

∀(j, s) ∈ J
(III.10)

d) Full Model: The complete mixed-integer optimization
problem is then given as

minimize
c,x,y,λ

(III.1) objective

subject to (III.2)− (III.4) job scheduling constraints
(III.5)− (III.8) network constraints
(III.9)− (III.10) delay constraints

We used AMPL [12, 13] to implement this mixed-integer
model. The model is not specific to any particular super-
facility: parameters such as network topology, connectivity,
HPC sites, and scientific facilities are customizable through a
configuration file. The full code is open source and available
at https://github.com/ramsesproject/superfacility-mip.

B. A discrete event simulation

Finding an optimal solution by using mathematical program-
ming for large problem sizes may not be feasible. Therefore,
our framework uses mathematical programming on one or
more representative subsets of the problem and uses simulation
to evaluate the solutions on large problem.

A discrete event simulation (DES) models the operation of
a system as a discrete sequence of events in time. Each event
occurs at a particular instant in time and marks a change
of state in the system [14]. Between consecutive events, no
change in the system is assumed to occur; the simulation
can directly jump in time from one event to the next. The
DES approach thus contrasts with continuous simulation in
which the simulation continuously tracks the system dynamics
over time. DES is called an activity-based simulation; time is

divided into small time slices, and the system state is updated
according to the activities that occur in each time slice. This
type of simulation is ideal for modeling the execution process
of workflow over distributed infrastructure.

We have built a discrete event simulator that encompasses
experiments at light source facilities, data transfers from
experiment facilities to HPC sites, and job scheduling and
execution on HPC sites. It focuses on the process of the
distributed workflow. The simulator is implemented in the
Python programming language with the ns-3 DES engine [15].
The code and a tutorial are available at https://github.com/
ramsesproject/superfacility.

1) Distributed workflow: Figure 2 shows the flow of simu-
lation events. All actions are driven by events through callback
functions. Compared with a continuous implementation that
updates state variables at each time step, this DES implemen-
tation runs much faster because it does not have to simulate
every time step.

At each beamline of each light source facility, a job is
characterized by its arrival time (tar), experiment setup time
(Ts), data acquisition time (Tdaq), raw dataset size (Sraw),
number of computing nodes required for analysis (Nnode),
data analysis time (Trun), and size of the results (Sres). In
simulation, we obtain these job characteristics by sampling
from the statistical data that we collect from each light source
facility. More specifically, in the beamline simulation module
(on the top of Figure 2), when a previous experiment is done or
at the beginning of simulation, a new job is initialized based
on data we collect at each facility if the current time is in
the operation time period (as shown in Figure 5). Then, an
event associated with a callback function setupFinishCB() is
scheduled to happen after Ts seconds; that function updates
state variables and schedules another event associated with
callback function daqFinishCB() to finish the data acquisition
(i.e., right after Tdaq seconds). The callback function daqFin-
ishCB() either triggers a new experiment if the current time
is in the operating period or schedules an event associated
with a callback function to trigger a new experiment. Thus,
each beamline of the light source facility keeps generating jobs
during its operating period (shown in Figure 5).

The job will be sent to the global scheduler once its data are
ready to be analyzed. Then the global scheduler will choose
an HPC site for the job based on network and computing
resource availability. We show in Figure 3 the job scheduling
and network bandwidth reservation and sharing algorithm.

2) Scheduling: The scheduler or resource manager has a
global view of resource availability and is responsible for
finding the best resource for each job. Scheduler policies have
a great deal of influence on job slowdown and resource uti-
lization. Currently we have implemented only one scheduling
policy; other policies could be added, allowing the use of the
simulator to study the effectiveness of different scheduling
policies before deployment.

Our current scheduling policy (also shown in Figure 3)
assumes that there is a global scheduler that knows the
availability of the wide-area network and each HPC computing

https://github.com/ramsesproject/superfacility-mip
https://github.com/ramsesproject/superfacility
https://github.com/ramsesproject/superfacility


initiate a iob experiment setup 
callback

experiment 
finishing callback

schedule setup 
finish event

schedule experiment 
finish event

send job to 
scheduler

send job to data 
transfer node

schedule job to  a 
HPC site

send job to HPC 
site

schedule start run 
event

start running 
callback

schedule run 
finish event

send results to its 
experiment site

raw data transfer 
finish callback

reschedule 
transfer finish 
event of other 
related jobs

Data transfer and job running are synchronized by bandwidth 
reservation. I.e., data transfer is guaranteed to be done (unless 
there is a failure) before scheduled running time of job at HPC 
site

reserve bandwidth 

fair share free 
bandwidth

schedule transfer 
finish event

independent for each instrument

Iterate over each HPC site to 
calculate earliest job completion 
time based on HPC resource 
and network availability.

Fig. 2: Discrete event simulation flow chart of jobs over the superfacility. The detailed job scheduling algorithm is shown in Figure 3.

resource. When a new job is sent to the scheduler, we iterate
over each HPC site to compute the earliest time when sufficient
resources becomes available. Specifically, to calculate the
earliest time, we first check the bandwidth availability from
the light source facility to the tentative target HPC site in order
to compute the shortest data transfer time Ttrs. Then we check
the computing resource availability from Ttrs seconds from that
moment. The scheduler iterates over all HPC sites and selects
the one with the earliest computing resource available time.

3) Data transfer service: We assume a guaranteed data
transfer time, as might be obtained by using a bandwidth
reservation system such as OSCARS [16] over ESnet to
reserve a specific amount of bandwidth from experiment site E
to HPC site C for a given time period. Thus, the data transfer
time will be guaranteed, and the job can be started to run on
the HPC site as scheduled.

We also assume that the remaining (unreserved) bandwidth
of each physical link is fair shared by all ongoing transfers.
If, for example, there are 10 transfers over a 100 Gbps link at
time t1 with a total reserved bandwidth of 80 Gbps, then each
job will get extra 2 Gbps of bandwidth because of fair sharing
of the unreserved 20 Gbps. This mechanism is applied because
some new jobs may come at a future time t2; the new job will
have more bandwidth available if some of these 10 transfers
are done before t2 because of the extra 2 Gbps of bandwidth.
Thus, in simulation, an callback function that updates the extra
bandwidth will be triggered when there is a new transfer or

an ongoing transfer has finished.

IV. CASE STUDY

We demonstrate the use of our framework to explore design
choices for a superfacility and to evaluate quantitatively the
tradeoffs between user metrics (e.g., response time) and system
metrics (e.g., utilization). Specifically, we evaluate the design
choices for a superfacility that provides on-demand computing
resources for five U.S. Department of Energy light source
facilities [17]: the Advanced Light Source (ALS), Advanced
Photon Source (APS), National Synchrotron Light Source II
(NSLS), Linac Coherent Light Source (LCLS), and Stanford
Synchrotron Radiation light source (SSRL).

A first factor to consider when studying computing needs
at light sources is the facility operating schedules. As shown
in Figure 4, each facility alternates between normal operating
periods and shutdown periods in which maintenance is per-
formed, with the latter scheduled on both weekly and longer
cadences. The shutdown periods of the different facilities
overlap a great deal, with aggregate operating hours being
particularly reduced in January, September, and December.

A second factor is the nature of the computing tasks
that facilities generate when operating. Here we relied on
measurements and/or estimates provided by the facilities of
experiment setup time, data acquisition time, size of raw data,
and computing demand in core-hours. Building on these data,
we quantified and summed the hourly computing resource



Get the max available 
bandwidth from E to C

A new job ready on E, 
foreach HPC site C

Calculate transfer time ttrttr
(based on RTT, bandwidth and DTN load)

Starting from ttrttr+Now(), 
find computing resource 
available time on C, thpcthpc

Choosing HPC site based 
on thpcthpc

Recalculate bandwidth 
required. (to transfer all 

data before thpcthpc)
Reserve required 
bandwidth BresvBresv

Starting transfer with 
bandwidth Bresv + BexBresv + Bex

Fair share free bandwidth 
with other transfers BexBex

Update BexBex of transfers 
that share the link

Fig. 3: Simulated job scheduling and data transfer process.

Jan 2017 Feb 2017 Mar 2017 Apr 2017 May 2017 Jun 2017 Jul 2017 Aug 2017 Sep 2017 Oct 2017 Nov 2017 Dec 2017

NSLS

APS

SSRL

LCLS

ALS

Fig. 4: Shaded periods denote normal operating periods at each of the five DOE light source facilities during 2017. Other time
periods are shutdown periods for maintenance.

demands across all five facilities. The resulting numbers are
approximate and do not necessarily capture future evolution
in demand, but they provide a basis for analysis.

Figure 5 shows the resulting aggregate computing resource
demands. The green line indicates the (often substantial)
computing resources required to ensure on-demand access
to computing during each period; the blue line shows the
computing resources required to meet average demand over
the year, that is, to ensure that all demands are eventually
met. As the figure shows, the difference between peak and
average computing demand is high; thus, deploying sufficient
resources to be able to meet peak demand at all times will
result in low utilization.

A. Analysis of simple design choices

Some design choices can be evaluated (and possibly elimi-
nated) by using basic analysis.

a) Dedicated supercomputer for each facility: The most
straightforward way to realize on-demand analysis of light
source data is to build a separate, dedicated computing re-
source at each facility capable of meeting its peak require-
ments. Doing so, however, will result in overall utilizations of
20.7%. These utilization values are calculated by dividing the
actual resource requirement (sum of the compute requirement
for each job in core-hours) by the total resource deployed (the
peak demand times 8760, which is the number of hours in one
year). One reason for the low utilizations is that, as shown in
Figure 4, each facility has its own shutdown periods on both
long (months) and short (days) time scales. Indeed, NSLS,
APS, SSRL, LCLS, and ALS operate for only 46.6%, 56.8%,
63.4%, 57.8%, and 48.3% of the time, respectively, in 2017.

b) One supercomputer for all facilities: Another obvious
design choice is to build a single centralized compute facility
to meet the aggregate demand of all five light source facilities.
If we do so, however, the overall resource utilization is only
28.7%. While better than building a separate computer for
each facility, this is still extremely low. The problem is that
the difference between the peak and average demand is large,
as shown in Figure 5.

c) Optimization of demand: We can improve compute
resource utilization by reducing the gap between peak and
average demand. For example, we could adjust the shutdown
schedule for different facilities. One simple adjustment would
be to retain the current sequence of active and shutdown
periods at each facility, but to shift certain facilities’ annual
operating schedules forward in time in a manner that reduces
contention for shared compute resources. We explored this
option, performing an exhaustive search of potential whole-
day shifts across the various facilities. (This search took about
1,000 core-hours; but since this is a one-time optimization, it
is not onerous.) We determined that the optimal shift to reduce
the variance in demand for each facility would be SNSLS = 0
days, SAPS = 159 days, SSSRL = 350 days, SLCLS = 202 days,
and SALS = 318 days. Figure 6 shows the shifted schedule and
Figure 7 the computing resource requirements after applying
the optimal shift. Comparing with Figure 5, we see that the
variance in resource demand is indeed reduced after shifting
the operating schedule.

Even with this shifted schedule, however, and if we deploy
enough compute resources to provide on-demand access for all
jobs, the average resource utilization is still only 34%. This
result can be improved by other adjustments. For example, we
could adjust experiment schedules during operations. Alterna-



Jan 2017 Feb 2017 Mar 2017 Apr 2017 May 2017 Jun 2017 Jul 2017 Aug 2017 Sep 2017 Oct 2017 Nov 2017 Dec 20170

1

2

3

4

5

6

7
Nu

m
be

r o
f n

od
es

 re
qu

rie
d 

(×
1k

)

Fig. 5: Aggregate computing requirement for select data- and compute-intensive beamlines at the five facilities.

Jan 2017 Feb 2017 Mar 2017 Apr 2017 May 2017 Jun 2017 Jul 2017 Aug 2017 Sep 2017 Oct 2017 Nov 2017 Dec 2017

NSLS

APS

SSRL

LCLS

ALS

Fig. 6: Operating schedule of five DOE light source facilities after applying optimal shift to each facility’s 2017 schedule.

Jan 2017 Feb 2017 Mar 2017 Apr 2017 May 2017 Jun 2017 Jul 2017 Aug 2017 Sep 2017 Oct 2017 Nov 2017 Dec 20170

1

2

3

4

5

6

7

Nu
m

be
r o

f n
od

es
 re

qu
rie

d 
(×

1k
)

Fig. 7: Aggregate computing demand for data- and compute-intensive beamlines at the five facilities after applying optimal shift.

tively, we could allow certain (presumably lower-priority) jobs
to be delayed. If 5% of the jobs can have slowdown greater
than one, then resource utilization improves to 61%.

d) Distribution of the compute resources: A single com-
pute facility introduces a single point of failure and potentially
also excessive communication costs. Distributing the comput-
ing resources to multiple locations can improve availability
and reduce network congestion.

Besides the five light source facilities, the DOE Office of
Science operates three major HPC sites: the Argonne Lead-
ership Computing Facility (ALCF), Oak Ridge Leadership
Computing Facility (OLCF), and National Energy Research
Scientific Computing Center (NERSC). These HPC sites and
the light source facilities are all connected by the ESnet, a
high-speed computer network serving DOE scientists and their
collaborators worldwide. To ease HPC resource management,
we assume that the new computing resources can be deployed
to those three HPC sites. Figure 9 shows the topology of the
proposed superfacility.

Table I compares the 75th and 95th percentile slowdown for
the regular and shifted schedule with the compute resources
distributed equally across the three compute facilities.

TABLE I: Comparison of slowdown between regular operating
scheduling and optimally shifted operating schedule.

Resource Regular Schedule Optimal Schedule
Q75 Q95 Q75 Q95

1.00× 986.31 6321.02 457.48 1400.24
1.25× 141.30 991.51 14.71 73.68
1.50× 7.30 82.56 1.41 5.23
1.75× 3.12 10.06 1.12 1.99
2.00× 1.21 2.99 1.04 1.77

B. Joint optimization of design choices: A demonstration

Section IV-A excluded some straightforward design choices
through basic analysis. Both analytics in terms of resource
utilization, experiment job slowdown, and the influence of
unplanned outage imply that distributed-computing resources
is a better choice. This section demonstrates the use of our
framework to evaluate the design choice.

The time taken by state-of-the-art mixed-integer linear
programming algorithms to solve a particular instance may
partly depend on its size, that is, on the number of discrete
variables and associated constraints. The model presented in



DOE - ESnet

…
 Experiment Facility m

…
 

Data analysis process

Computing Facility 1

…
 

High Performance Computer

Data analysis process

Computing node 1

Computing node x

Data Read Process 

HPC Storage

Data Transfer Process RAM Data analysis 
processData Transfer Process RAM

Computing node q

Data Transfer Process

Data Transfer Node

Data Transfer Process

Data Transfer Node
Data Write Process

… 

Computing Facility p

Data analysis process…
 

High Performance Computer

Data analysis process

Computing node 1

Computing node x

Data Read Process 

HPC Storage

Data Transfer Process RAM Data analysis 
processData Transfer Process RAM

Computing node q

Data Transfer Process

Data Transfer Node

Data Transfer Process

Data Transfer Node
Data Write Process

… …
 

Instrument n

Data acquisition process Data Transfer ProcessRAM

Data Acquisition Node

Visualization process Data Transfer ProcessRAM

Data Visualization Node

Instrument  1

Data acquisition process

Data Acquisition Node

Visualization process

Data Visualization Node Data Transfer Process
Data Transfer NodeData Read Process 

Storage

Data Write Process

…
 

Experiment Facility 1

Instrument n

Data acquisition process Data Transfer ProcessRAM

Data Acquisition Node

Visualization process Data Transfer ProcessRAM

Data Visualization Node

Instrument  1

Data acquisition process

Data Acquisition Node

Visualization process

Data Visualization Node Data Transfer Process
Data Transfer NodeData Read Process 

Storage

Data Write Process

Fig. 8: Sample superfacility over ESnet that supports both streaming and batch workflows.

SLAC

NERSC
LBL

PNWG

DENV

ELPA

HOUS

KANS

NASH

ATLA

ORNL

ANL

CHIC

AOFA
NEWY

BNL

BOST

SUNN

SACR

WASH

SSRL

LCLS

ALCF

APS

OLCF

NSLS

ALS
STAR

Supercomputer center
Hub

Lightsource facility

ALBQ

Fig. 9: DOE superfacility topology, showing the five light sources,
three HPC facilities, and the ESnet backbone.

this paper has |J | × |R| × (
∑

(j,s)∈J |Tjs|), |J | × |R| ×
(
∑
s∈S,r∈R|P(s, r)|)× (

∑
(j,s)∈J |Tjs|) and |J | instances of

the x, λ, and w binary variables, respectively. Since sites,
resources, and links do not change frequently, the major factors
impacting the number of variables and constraints (except
(III.9)) are the number of jobs (|J |) and the time period (|T |)
of the optimization.

Solving a model with many intervals is a challenge in terms
of both compute and memory requirements. For example,
when using a step size of 10 seconds, a model for five
hours (1,800 intervals, about 200 jobs) will have hundreds
of thousands of variables. Therefore, instead of solving the
model for a whole year (T ), we solve the model for some
representative time periods and then use simulation to evaluate
the top-k optimal solutions of each time period in order to
achieve the feasible optimal choice in practice.

After applying the optimal shift, we have four of the five
facilities operating most of the time (see Figure 7). We pick six
short (three-hour) representative time periods—one in which
all facilities are operating and five in which only four facilities
are operating, with each of the latter involving a unique set of
four operating facilities. We implemented the MIP model by
using AMPL [12, 13], solved with CPLEX optimizer [18] for
this subset, and evaluated the top 20 optimal solutions of the
MIP model by using simulation.

Table II shows example simulation results. We have de-
signed our framework to output multiple solutions, for two
reasons. First, many design choices have similar objective
function values (e.g., job slowdown). For example, Figure 10
shows the objective function value of the top 20 solutions.
The difference between the optimal objective function value
and the 20th optimal is small (only 1.6 %). However, their
resource distributions are different. Second, we do not expect
that even a good model will capture all design constraints.
Thus an apparently suboptimal design choice (i.e., one with a
slightly different objective function value) may be subjectively
more feasible in practice. By presenting multiple solutions,
we allow analysts to consider other factors in their decision
making.

V. RELATED WORK

The most straightforward way to evaluate the performance
of a new system before it is built is through modeling and
simulation. This process can help determine performance
bottlenecks inherent in an architecture and provide a basis for
refining the system configuration.

Optimal job scheduling is NP-hard because of its com-
binatorial nature. The study of scheduling algorithms for
workflows that run over distributed infrastructure has been an
active area of research. Given the nature of most scheduling



0 2 4 6 8 10 12 14 16 18
Top-k optimal solution index

1.375

1.380

1.385

1.390

1.395

1.400

1.405
Av

er
ag

e 
jo

b 
slo

wd
ow

n

Fig. 10: Objective function values (average job slowdown) of top
20 optimal solutions.

TABLE II: Tradeoff between resource distribution and job
slowdown. SD denotes the 75th percentile of job slowdown, UT
is the computing resource utilization (%).

Design choice Metric
Computer nodes Network User (SD) Provider (UT)

ANL NERSC ORNL

774 669 1653 20 Gbps 2.07 66.7
771 1476 849 20 Gbps 1.54 66.7
938 1050 1108 20 Gbps 1.41 66.7

1220 1050 826 20 Gbps 1.37 66.7
990 757 653 30 Gbps 52.0 86.0
966 778 656 30 Gbps 51.8 86.0

1122 1050 924 30 Gbps 1.13 66.7
798 1184 1114 30 Gbps 1.13 66.7
668 808 1620 30 Gbps 1.16 66.7
571 808 1717 30 Gbps 1.17 66.7

problems, one needs to evaluate and compare their efficacy
over a wide range of scenarios. It has thus become necessary to
simulate those algorithms for increasingly complex distributed
dynamic and workflow applications. For example, Casanova
et al. [19, 20] developed SimGrid, a simulation toolkit for the
study of scheduling algorithms for distributed applications. Wu
et al. [21] used a simulation system to study the execution
dynamics of distributed computing workflows and to evaluate
the network performance of workflow scheduling or mapping
algorithms before actual deployment and experimentation.
However, these systems focused on evaluating individual
workflows, not infrastructure design.

Mathematical programming is widely used in operations
research to minimize or maximize an objective function of
many variables, subject to constraints on the variables [12]. It
is also an important tool for optimizing design choices, job
scheduling, and resource configuration in distributed systems.
For example, Chretien et al. [22] introduced an approach based
on successive linear programming approximations of a sparse
model. They relaxed an integer linear program and used lp
norm-based operators to force the solver to find almost-integer
solutions that can be assimilated to an integer solution. Kumar
et al. [23] presented a metabroker that schedules multiple jobs

on utility grids, with a linear/integer programming model used
to schedule jobs. They also proposed a linear-programming-
driven genetic algorithm that combines linear programming
and genetic algorithms to obtain a metaschedule that mini-
mizes the combined cost of all users in a coordinated manner.
However, these studies focused on evaluating scheduling al-
gorithms and did not consider infrastructure constraints, such
as networks.

Although researchers have demonstrated near-real-time pro-
cessing of data from experimental facilities [5, 7, 8, 11], they
have not addressed the problem of how to obtain the compute
and network resources on demand. The use of numerical
optimization and simulation methods to guide design of dis-
tributed systems is well established [24, 25]. However, little
work has been done on applying such methods to the design
of distributed computational facilities. The Models Of Net-
worked Analysis at Regional Centers (MONARC) system [26]
applied discrete event simulation methods to evaluate design
alternatives for high energy physics computing; their focus was
on specialized workflows involving a single data source and
many data analysis sites. Others have used simulation to study
the performance of distributed computing applications [19, 20],
scheduling algorithms [27], or data replication strategies [28],
among many other topics, but with a focus on application
performance rather than large-scale system design.

VI. DISCUSSION AND CONCLUSION

We have presented a framework to evaluate design choices
for a cyberinfrastructure. The framework uses a combination
of mathematical programming and simulation to find near-
optimal resource distributions that can work well in prac-
tice. We used mixed-integer programming to find the top
k optimal resource distributions for a representative subset
of the problem, and we evaluated these solutions using a
discrete event simulator that incorporates a number of aspects
to mimic the real-world environment. We used the example
of a superfacility for analyzing light source data in order
to demonstrate how our framework can be used to evaluate
different design choices and understand associated tradeoffs.
The customizable simulator developed in this work is also
useful in superfacility operations, for example (1) to work
as a part to decision support system to evaluate proposals
for unforeseen scenarios; (2) to prove the feasibility of new
project in terms of its computing requirement; and (3) to
study scheduling algorithms for workflows run over distributed
infrastructure.

We note that we did not consider the use of commercial
clouds in our design choices; we plan to do so in future
work. Another topic of future work is integrating the simu-
lator (it will work as a function to evaluate design choices)
with derivative-free optimization methods in order to directly
optimize superfacility design choices.

ACKNOWLEDGMENT

This material was based upon work supported in part
by the U.S. Department of Energy, Office of Science, Ad-



vanced Scientific Computing Research, under Contract DE-
AC02-06CH11357. The mathematical programming model
was solved by using a cluster hosted by the Joint Laboratory
for System Evaluation at Argonne National Laboratory. We
thank Amedeo Perazzo, Aina Cohen, Dula Parkinson, Alexan-
der Hexemer, Brian Toby, and Nicholas Schwarz for providing
us data about the experiment characteristics at light source
facilities.

REFERENCES

[1] “Directing Matter and Energy: Five Challenges for Science and
the Imagination,” https://science.energy.gov/∼/media/bes/pdf/reports/
files/Directing Matter and Energy rpt.pdf, 2007.

[2] “Next-Generation Photon Sources for Grand Challenges in Sci-
ence and Energy,” https://science.energy.gov/∼/media/bes/pdf/reports/
files/Next-Generation Photon Sources rpt.pdf, 2009.

[3] “The Report of the BES Advisory Subcommittee on Future X-ray Light
Sources,” https://science.energy.gov/∼/media/bes/besac/pdf/Reports/
Future Light Sources report BESAC approved 72513.pdf, 2013.

[4] T. Bicer, D. Gursoy, R. Kettimuthu, F. De Carlo, G. Agrawal, and
I. T. Foster, “Rapid tomographic image reconstruction via large-scale
parallelization,” in Euro-Par 2015: Parallel Processing. LNCS 9233,
2015, pp. 289–302. [Online]. Available: http://dx.doi.org/10.1007/
978-3-662-48096-0 23

[5] T. Bicer, D. Gürsoy, R. Kettimuthu, F. De Carlo, and I. T.
Foster, “Optimization of tomographic reconstruction workflows on
geographically distributed resources,” Journal of Synchrotron Radiation,
vol. 23, no. 4, pp. 997–1005, Jul 2016. [Online]. Available:
https://doi.org/10.1107/S1600577516007980

[6] J. M. Wozniak, H. Sharma, T. G. Armstrong, M. Wilde, J. D. Almer, and
I. Foster, “Big data staging with MPI-IO for interactive X-ray science,”
in IEEE/ACM International Symposium on Big Data Computing. IEEE
Computer Society, 2014, pp. 26–34.

[7] J. M. Wozniak, K. Chard, B. Blaiszik, M. Wilde, and I. Foster,
“Streaming, storing, and sharing big data for light source science,” Proc.
STREAM, 2015.

[8] I. Foster, R. Ananthakrishnan, B. Blaiszik, K. Chard, R. Osborn,
S. Tuecke, M. Wilde, and J. Wozniak, “Networking materials data:
Accelerating discovery at an experimental facility,” in Big Data and
High Performance Computing. IOS Press, 2015, pp. 117–132.

[9] J. Deng, Y. S. Nashed, S. Chen, N. W. Phillips, T. Peterka, R. Ross,
S. Vogt, C. Jacobsen, and D. J. Vine, “Continuous motion scan ptychog-
raphy: characterization for increased speed in coherent x-ray imaging,”
Optics Express, vol. 23, no. 5, pp. 5438–5451, 2015.

[10] M. J. Cherukara, K. Sasikumar, W. Cha, B. Narayanan, S. Leake,
E. Dufresne, T. Peterka, I. McNulty, H. Wen, S. K. Sankaranarayanan
et al., “Ultra-fast three-dimensional X-ray imaging of deformation
modes in ZnO nanocrystals,” Nano Letters, 2017.

[11] L. Ramakrishnan, G. Fox, and S. Jha, “Stream2016: Streaming re-
quirements, experience, applications and middleware workshop,” Tech.
Rep. LBNL-1006355, 2016, https://pubarchive.lbl.gov/islandora/object/
ir%3A1006355/.

[12] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A modeling
language for mathematical programming. Second edition. INFORMS,
2002.

[13] “AMPL Optimization Inc.” 2009, http://ampl.com/about-us/.
[14] S. Robinson, Simulation: The Practice of Model Development and Use.

John Wiley & Sons, 2004.
[15] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,”

Modeling and Tools for Network Simulation, pp. 15–34, 2010.
[16] ESnet-OSCARS, On-Demand Secure Circuits and Advance Reser-

vation System, 2017 (accessed June 3, 2017), https://www.es.net/
engineering-services/oscars/.

[17] U.S. DOE Office of Science, X-Ray Light Sources, 2017 (ac-
cessed June 13, 2017), https://science.energy.gov/bes/suf/user-facilities/
x-ray-light-sources/.

[18] “IBM ILOG CPLEX V12.1: Users manual for CPLEX,” 2009, Interna-
tional Business Machines Corporation.

[19] H. Casanova, “SimGrid: A toolkit for the simulation of application
scheduling,” in 1st IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2001, pp. 430–437.

[20] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing,
vol. 74, no. 10, pp. 2899–2917, Jun. 2014. [Online]. Available:
http://hal.inria.fr/hal-01017319

[21] Q. Wu and Y. Gu, “Modeling and simulation of distributed computing
workflows in heterogeneous network environments,” SIMULATION,
vol. 87, no. 12, pp. 1049–1065, 2011. [Online]. Available: http:
//dx.doi.org/10.1177/0037549710396920

[22] S. Chretien, J.-M. Nicod, L. Philippe, V. Rehn-Sonigo, and L. Toch,
“Job scheduling using successive linear programming approximations
of a sparse model,” in 18th International Euro-Par Parallel Processing
Conference. Springer, 2012, pp. 116–127. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32820-6 14

[23] S. K. Garg, P. Konugurthi, and R. Buyya, “A linear programming-
driven genetic algorithm for meta-scheduling on utility grids,”
International Journal of Parallel, Emergent and Distributed Systems,
vol. 26, no. 6, pp. 493–517, 2011. [Online]. Available: http:
//dx.doi.org/10.1080/17445760.2010.530002

[24] A. N. Tantawi and D. Towsley, “Optimal static load balancing in
distributed computer systems,” Journal of the ACM, vol. 32, no. 2, pp.
445–465, 1985.

[25] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu et al., “Advances in network
simulation,” Computer, vol. 33, no. 5, pp. 59–67, 2000.

[26] I. C. Legrand and H. B. Newman, “The MONARC toolset for sim-
ulating large network-distributed processing systems,” in 32nd Winter
Simulation Conference, 2000, pp. 1794–1801.

[27] H. Arabnejad, J. G. Barbosa, and R. Prodan, “Low-time complexity
budget–deadline constrained workflow scheduling on heterogeneous
resources,” Future Generation Computer Systems, vol. 55, pp. 29–40,
2016.

[28] K. Ranganathan and I. Foster, “Identifying dynamic replication strategies
for a high-performance data grid,” in Grid Computing. LNCS 2242.
Springer, 2001, pp. 75–86.

https://science.energy.gov/~/media/bes/pdf/reports/files/Directing_Matter_and_Energy_rpt.pdf
https://science.energy.gov/~/media/bes/pdf/reports/files/Directing_Matter_and_Energy_rpt.pdf
https://science.energy.gov/~/media/bes/pdf/reports/files/Next-Generation_Photon_Sources_rpt.pdf
https://science.energy.gov/~/media/bes/pdf/reports/files/Next-Generation_Photon_Sources_rpt.pdf
https://science.energy.gov/~/media/bes/besac/pdf/Reports/Future_Light_Sources_report_BESAC_approved_72513.pdf
https://science.energy.gov/~/media/bes/besac/pdf/Reports/Future_Light_Sources_report_BESAC_approved_72513.pdf
http://dx.doi.org/10.1007/978-3-662-48096-0_23
http://dx.doi.org/10.1007/978-3-662-48096-0_23
https://doi.org/10.1107/S1600577516007980
https://pubarchive.lbl.gov/islandora/object/ir%3A1006355/
https://pubarchive.lbl.gov/islandora/object/ir%3A1006355/
http://ampl.com/about-us/
https://www.es.net/engineering-services/oscars/
https://www.es.net/engineering-services/oscars/
https://science.energy.gov/bes/suf/user-facilities/x-ray-light-sources/
https://science.energy.gov/bes/suf/user-facilities/x-ray-light-sources/
http://hal.inria.fr/hal-01017319
http://dx.doi.org/10.1177/0037549710396920
http://dx.doi.org/10.1177/0037549710396920
http://dx.doi.org/10.1007/978-3-642-32820-6_14
http://dx.doi.org/10.1080/17445760.2010.530002
http://dx.doi.org/10.1080/17445760.2010.530002

