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Agenda

] Explain wide area file transfer performance in a quantitive way;

[ Characterize file transfer and its infrastructure from logs; Case 1
[ Transfer information into knowledge for optimization (successful stories); How can we adapt X to make
it work more efficiently?
: e Model-based
] Computing Facility logs (ALCF); case 2

] Lightsource facility data analysis and Experiment facilitating (APS) ~ what's the relationship
Case 3 between X(in) and Y(out)?

Model-based
Prediction

How does it work?
What is affecting the
performance?

Explanation

Better without benchmark
or instrument



Get a deep understanding of end-to-end file transfer performance
(Explain)



Introduction - globus.org
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The Globus transfer service Is a cloud-
hosted software-as-a-service, to  provide
convenient, reliable and secure file transfers
service between pairs of storage systems

Rmax S min(DRmax, MMmax,DWmax)

Globus endpoints, grouped by number of deployments in a
single location. (Some endpoints geolocate erroneously to the
center of countries.)



What affect transfer performance? -1

File characteristics:

O

[ Big files (top 50%) [ Small files (bottom 50%

w H U1 O d O

Average rate (MByte/s)
N

14 19 24 28 33 3843 48 5257 6267 72 76 81 86 91
Total number of bytes transferred (GB)

Large transfers with big average file size are more likely to have better performance.
[.E, The startup cost is high.

Liu et al. HPDC’17
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What affect transfer performance?

Tunable transfer parameters
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What affect transfer performance? -3
Contention from simultaneous globus transfers (I/0O, NIC, CPU & RAM):

K Contending incoming transfer rate on srcy. ;S5 Number of incoming TCP streams on srcj.
qoout] jesout redout] o K ;out Contenc:.ing outgoing transfer rate on srcy. Ssout Number of outgoing TCP streams on srcg. 5
e R o K sl Contending incoming transfer rate on dsty. gdin Number of incoming TCP streams on dsty.
G @ G .K%ut  Contending outgoing transfer rate on dsty. gdout Number of outgoing TCP streams on dstj.
- ﬁKn Kdmﬁ B
: X

Gast GridFTP instance count on dsty.

N Linear regression [ eXtreme Gradient Boosting

5 10 15 20 25
Edge
Model based feature interpretability Model based feature importance

Feature
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What affect transfer performance? -4

Contention from non-globus programs (shared environment)
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What affect transfer performance? -4

Influence of unknown load:
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unknown load affects features’ interpretability coefficient of determination ( r?).

It Is a useful way to filter out noisy logs, extract information from noisy data



It is time to

Build a Wide-Area File Transfer Performance Predictor



Top 5 frequency (%)
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Liuetal. MLN’18

Data transfer: Prediction

Machine learning based predictor
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Get a deep understanding of end-to-end file transfer trends and user behavior.
(How does it look like in reality)
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Wide Area File Transfer

By using Globus GridFTP, about 20 billion files, totaling 1.8 Exabyte between any two of 63,166 unique endpoints
were transferred from 2014 to 2017. On average more than 25,000 files are transferred per minute in 2017.

There are 20.5 billion STOR logs totaling 1.5 EiB received and 19.4 billion RETR logs totaling 1.8 EiB transferred.
(not equal? user can disable data collection feature, no perfect data)

idataset size, # files, average file size, directories, file type
:and dataset sharing behavior :

Transfer characteristic ;
:Data integrity checking, encryption, and reliability, transfer:
direction, performance, duration and transfer parameters |

User behavior :
gtransfer frequency, transfer volume, degree of connection
ito endpoints and pattern of users access endpoint '

°e 1-100TB e®e 100-500TB 500-1000TB 0%e 1-10PB 0%e 10+PB

. Endpoint
gdegree of sharing to users, resource utilization (idle time
:percentage), source-to-destination edge

Geographical distribution of bytes moved in, per city in 2017
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Data transfer: Characterization

some of the observations from 40 Billion file transfer records, totaling 3.4 Exabytes of data transferred.
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Wide Area File Transfer

Motivational / Counter-Intuitive / Interesting observations

: Observation 1. Most of the datasets moved over the wide area are *

. small. Specifically, the 50th, 75th, and 95th quartiles of dataset size *
- are 6.3 MB, 221.5 MB, and 55.8 GB, respectively. Counterintuitively,

+ the dataset size has decreased year by year from 2014 to 2017.

-Observation 4. Image files are the most common file type trans-:

- ferred, followed by raw text files. Scientific formats such as .h5 (hier-:
-archical data format) and .nc (NetCDF) are in the top 10. :

Lots of image transferred, ~35% are
potentially compressible

Observation 7. Transfers involve many more downloads (GCS to -
. GCP) than uploads (GCP to GCS).

:Observation 10. Of all the bytes transferred, 80% are by just 3% of -
- all users; 10% of the users transferred 95% of the data. :

: Observation 2. Most of the datasets transferred by the Globus trans-
© fer service have only one file. And 17.6% of those datasets (or 11% of :
: the total) have a file size of > 100 MB, motivating the need for striping *

. the single-file transfer over multiple servers.

lots of single file transfers
motivates striping

Observation 5. Repeated transfers are not common, less than 7.7% -
. of the datasets are transferred more than once. When they do occur, -
- the datasets in question are distributed mostly from one (or a few)
- endpoints to multiple destinations (i.e., Nysr < Ny ). We also observe
- multiple users transferring the same data to the same destination.

. Observation 8. Although some server-to-server transfers achieve -

. high performance (dozens of Gbps), most transfer throughput is low. :
. For example, the median throughput is only tens of Mbps. There is no :
. clear increasing trend in terms of transfer performance over time.

: Observation 11. The degree distribution of the number of users per

+ endpoint follows a power-law distribution, similar to other real-world :
- social network graphs.

User (scientist) behaves similarly as human in social network

Liu et al. HPDC’18

. Observation 3. The average file size of most datasets transferred is :
. small (on the order of few megabytes). Majority of individual file size
 is less than 1 MB. These results motivate the need for performance -
© optimizations aimed at small file transfers. :

: Observation 6. At least one checksum failure occurs per 1.26 TB. :
. Although integrity checking adds extra load to storage and CPU on -
. the source and destination endpoints, it is worthwhile. The failures -
. are decreasing year by year. Only 1.9% of transfers used encryption. :

Data corruption is common while
protection is expensive

.Observation 9. Most users do not manually tune the transfer pa-

.rameters (e.g., 94.6% of the transfers use P = 1). Transfer tools should -

-be smart enough to choose the best parameters for each transfer in -
.order to achieve maximum performance.

: Observation 12. DTN utilization is surprisingly low. Since the DTN -
© requirement is high for high-throughput DTNs, some good topics for
- research would be the use of these computing resource (1) for other '
. purposes; (2) for complex encoding to deal with data corruption and; '
- (3) to compress data to reduce the network bandwidth consumption. .

........... MOStDTNs are not Verybusy cecccscens



Observation motivated optimization — C1
(Real problem motivated)
Target: lots of small files, e.g., median is only a few MiB



: : . eg N Liu et al. CCGriD’19
Insights into transfer performance between scientific facilities 400 .
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An optimization motivated by the insights got from log analysis

Throughput (GB/s)

I

ime(minu

9

oo
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
I
|
|
|
|

o ~

Ul

OV

L3|80
File size influences the
performance a lot!

=P Without prefetching O=0 With prefetching

2000 3000 4000

Number of files

0 1000 5000

Prefetch on source actively reduces
overhead.

Frequency (%)

10

L
1
) T O O |

C (¢
Il
il

2

File size (byte)
In practice, transferred files are small.

Fa) fa) Fa) Fa) fa) fa)
|

\ 2

>

fread(256KB)

v

write to socket

Yes

refetch buffer full?

No
Y

prefetch(256KB)

Pre-fetching

N 00

CPU Usage (core*seconds)
N N N N

U1
o

o1 O

Throughput (GB/s)
w ~

N

o B

Liu etal. CCGriD’19

N
AN
o

4 8 10 20 30 40 50 60 70 80 90 100 200 300 400 450 500

_Concurrency
Current solution hides overhead by

transferring many files concurrently.

0]
o

~
o

o)}
o

Concurrency

But current solution needs higher end
DTNs and consumes more resources.



Observation motivated optimization — C2
(Real problem motivated)

Most DTNs (purposely build systems) are not very busy

Embracing Elastic: building an elastic data transfer infrastructure



Although most DTNs are not busy, some are very
heavily used and sometimes DTN resources are H On-demand DTN 1
insufficient, i.e., very high fluctuating demand

TABLE I: Elastic DTI Design Space

When

Usage threshold
Usage threshold
Upon arrival of new transfer
Upon arrival of new transfer

Where

Available core count
Available network capacity
Available core count
Available network capacity

Collaborating with Joaquin Chung
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Observation motivated optimization — C3
(Real problem motivated)

Lots of dynamic things affect file transfer performance, can we

Let Al (Reinforcement Machine Learning) Optimize Data Transfer
Node Smartly and Automatically
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Two more success stories about file transfer

] A comprehensive study of wide area data movement at a scientific computing facility

we characterized the network traffic of a computer facility’'s

transfer requests down to TCP flows. Load imbalances and opportunit

DINs atm

ultip

e levels, from user

for improvement are

identitied for planning system upgrades and future investments. SNTA@ICDCS 2018

] Model to achieve sustainable high-throughput, e.g., 1PIB in 6 hours and lessons learnt

workflow. Then, one PiB in six hours was achieved in 2018.

esson learnt and model built to move one PIB in a day for pipeline execution of a cosmology

Several more are proposed to funding agencies seeking support.



Combine, correlate and analyze logs of a Computing Facility
(ongoing)



ModSim’19

0 Darshan: Instruments the |/O behavior of production applications. It records statistics, such as the
number of files opened, time spent performing I/0O, and the amount of data accessed by an application

as well as the I/0 library used.
O Autoperf: collects hardware performance counter and MPI information.

0 Scheduler logs: Job properties, e.g., run time, computing resource requested / used.



ModSim’19

Runtime break

Darshan logs capture the time spent on each file 100
using either MPIIO or POSIX IO library.

00
-

Autoperf logs record the average time spent on MPI
functions for all processes and some hardware
performance monitors.

@)
o

40

=—® Filel/O
20 B—E Comm.

<t=¢ Comp.

Cumulative probability (%)

o
O
N

0.4 0.6 0.8 1.0
Fraction of run time

Observations:

Overall, nearly 30% of the total machine time was spent within MPI. But, about 30% of tasks almost did
not spend any time on MPI.

Nearly half of the tasks spent less than 2% of their total machine time on file I/O and nearly 80% of tasks

spent almost zero time on file /0. These findings reveals that computation is still the most intensive
operations of HPC applications.
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File 1/0 libraries

MPIIO (and high level libraries like HDF5, netCFD based on it) and POSIX are two libraries used. Darshan
records the time spent on each library calls. As for which file 1/O library are mostly used in HPC applications,
we studied the number of applications that used POSIX or MPIIO, or both.
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Observations: In terms of |/O library used frequency, POSIX is much more widely used than MPIIO.
Nevertheless, MPIIO consumed significantly more (> 3X) machine time than POSIX did. Although POSIX
are used for nearly all applications, it only consumed about 25% of the machine time. This may indicate
that developers mostly use MPIIO for large data read and write.

Motivates optimizing storage system for R/W small files using POSIX?
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Hardware performance - FLOPS

FLOPS is a commonly used measurement of supercomputer.
Counter PEVT_INST_QFPU_ALL gives the total number of floating _ 100

point operations done per MPI process. Thus,
PEVT INST QFPU ALL * numProcessesOnNode /

elapsedTime

Gives the achieved FLOPS per node.
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The peaks floating point performance of PowerPC A2 processor is (1.66 GHz) x (16 cores) x (4 vector
lane) x (2 operations per FMA) = 212.48 GFLOPS/node.

Surprising? Recall our observation “Overall, nearly 30% of the total machine time was spent within MPI. But, about 30% of tasks almost did
not spend any time on MPI.” HPC application does much more than floating point operation; theoretical FLOPS is hard to achieve.
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Hardware performance - OPS

PEVT INST XU ALL + PEVT INST QFPU ALL gives the +00
total number of operation.
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Similarly,

(PEVT INST XU ALL + PEVT INST QFPU ALL) *
numProcessesOnNode / elapsedTime

Gives the archived operations per second per node.
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Intuitively, for each float pointing point operation, there are 100

multiple other operations. Here we calculated: S y
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Observations: Most applications are not floating point 10° 10t 10° 10°  10° 10° 10° 10" 10°

# Instructions per floating point operation

operations intensive. Theoretical FLOPS is really hard to achieve
by actual applications.
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Hardware performance - Memory access

Counter PEVT_ |2 FETCH_LINE and PEVT_L2_STORE_LINE give the
total number of RAM FETCH and STORE traffic separately. Each
STORE/FETCH transfers 128 bytes. Thus we can calculate the archived
main memory throughput.

Each Mira node is equipped with 16GB 1.333GHz DDR3 memory with
peak 42.6~GB/s bandwidth.

Thanks to cache, the archived rate can be more than RAM’s Iimit. More
than 40% of the jobs achieved more than RAM’s limit due to proper use
of cache.
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In order to investigate if an application is memory bounded or
computing bounded, we calculate the average main memory traffic (128
bytes) per operations. [we need memory latency and IPS to conclude]
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Task grouping
We extract features to represent a task:

O Fraction of communication time

3 Fraction of MPI-IO time

0O Operations per second and FLOPS
0 Process per Node

0 RAM fetch/store per cycle

0 and more...

And then visualize high dimension features with
t-SNE. Each application is marked by a unique

color when plotting.

Observations: We can clearly see clusters in the
feature representation. We may be able to seek

explanations for those clusters with users’ project
information.

t-SNE visualization of task characterization
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Observations: It is clearly possible to build “signature” of each task based on the existing logs, with this

"signature”, we are able to:

(1) understand if the running application is what proposed to run;

(2) Since "signature" is built on performance counters, we can use it to group applications (taxonomy,
e.g., I/0 intensive, communication intensive, computing intensive or memory bounded) for optimization
and special servicing purpose.

(3) Adding energy consumption dimension could help categorize applications / projects / users for better
energy-cap control.

(4) Trained a XGB classifier with 70% tasks for top 20 (covers 94.9% tasks) applications in 2018, testing
accuracy is 99.5%. i.e., given 6 “signature” features, classifier can figure out which application it is,
proves the interpretability of the features.



It’s about data science and machine learning, can we help a little
big for lightsource facility data??



Liu et al. arXiv: 1902.07582

Intelligence: TomoGAN ML 19

Motivation:
(1) lower X-ray dosage for sensitive sample like bio-sample;
(2) faster experiment to capture dynamic features like a fast chemical reaction process.

(3) smaller dataset and less computation for [near] realtime tomography imaging.




Liu et al. arXiv: 1902.07582
TomoGAN MMLS’19

A Conditional Generative Adversarial Network for Low-Dose X-Ray Tomography

On the left, the results of conventional reconstruction, which are highly Model is trained with one shale sample imaged at APS and tested with
noisy. On the right, those same results after denoising with TomoGAN. another shale sample imaged at Swiss Light Source (SLS).

FBP takes 42 ms to reconstruct one image (using TomoPYy)
and TomoGAN takes 4 ms to enhance the reconstruction,
totals 46 ms per image. In contrast, the SIRT based solution
(using TomoPy) takes 550 ms (400 iterations), i.e., 12x
faster. Times are measured using one Tesla V100 graphic
card. Moreover, iterative reconstruction does not provide
better image quality than does our method.

SIRT + total variation (conventional SOTA, 550ms) Filtered Back Projection (42ms) + TomoGAN (4ms)



TomoGAN - Continue

Liu et al. arXiv: 1902.07582
MMLS’19

It has been applied to the joint ptycho-tomography problem for reconstructing the complex refractive

index of a 3D object.

Delta, 0.003

O There is a ptychography process to reconstruct
projections needed for tomography. but it is very time
consuming to image the sample (month).

0O Less datapoint results in noisier ptychography
reconstruction and worse tomography images.

0 TomoGAN here was used to enhance tomography
images with less data points need to collect, I.e.,
faster experiment.

Beta, 0.03



Al-Science 2018

Cyberinfrastructure (for Lightsource facilities)
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AutoMasking for Rapid Data Acquisition and Reduction (ongoing)

Incident X-ray beam
50-500um

ﬂ

Calibration Integration Top-View Plot

—> —> It needs to exclude certain areas on the
2D image from the integration process.



AutoMasking for XRD

Not deterministic. It can grow, move and diminish across a data series.

Needs to remove Needs to keep Tiny but needs to remove
O Now, it is masked manually by experienced beamline scientists.

O Each experiment generates 100x - 1000x images.
O The tool automatically save experts’ manual masks to harvest training dataset, we then train models to
learn from expert.
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Interests and Plans

Intelligent Infrastructure for Science
(e.g., Machine Learning for System, ML4Science, Al4Science)



Thanks!



Smart [for] Energy

we may save ~10% energy and will lose only 0.1% in performance



