
From System Logs to System Optimization
with the Power of Data Science and

Machine Learning

Zhengchun Liu

Research Scientist at the University of Chicago

June 10, 2019

Seminar at Argonne National Laboratory

Explain wide area file transfer performance in a quantitive way;

Characterize file transfer and its infrastructure from logs;

Transfer information into knowledge for optimization (successful stories);

Computing Facility logs (ALCF);

Lightsource facility data analysis and Experiment facilitating (APS)

Agenda

Explanation

Model-based
Prediction

Model-based
optimization

How does it work?
What is affecting the

performance?

What’s the relationship
between X(in) and Y(out)?

How can we adapt X to make
it work more efficiently?

}Case 1

Case 2

Case 3

Better without benchmark
or instrument

Get a deep understanding of end-to-end file transfer performance

(Explain)

Storage
System

GridFTP

Network

Storage
System

GridFTP

Network

Endpoint 1 Endpoint 2

WAN

disk-to-disk

Introduction - globus.org

Globus endpoints, grouped by number of deployments in a
single location. (Some endpoints geolocate erroneously to the
center of countries.)

The Globus transfer service is a cloud-
hosted software-as-a-service, to provide
convenient, reliable and secure file transfers
service between pairs of storage systems

Storage
System

GridFTP

Network

Storage
System

GridFTP

Network

Endpoint 1 Endpoint 2

WAN

disk-to-disk

Figure 1: Structure of a Globus end-to-end �le transfer from
source (le�) to destination (right), managed by cloud service.

work, in §7 discuss the broader applicability of our work, and in §8
summarize our conclusions and brie�y discuss future work.

2 BACKGROUND ON THE GLOBUS SERVICE
�e Globus transfer service is a cloud-hosted so�ware-as-a-service
implementation of the logic required to orchestrate �le transfers
between pairs of storage systems [2] (see Figure 1). A transfer
request speci�es, among other things, a source and destination; the
�les and/or directories to be transferred; and (optionally) whether
to perform integrity checking (enabled by default) and/or to encrypt
the data (disabled by default). Globus can transfer data with either
the GridFTP or HTTP protocol; we focus here on GridFTP transfers,
since HTTP support has been added only recently. GridFTP extends
FTP with features required for speed, reliability, and security.

Globus has been running since late 2010, providing us with a con-
siderable body of transfer performance data. In the work described
here, we consider transfers through the end of 2015. �ese transfers
involved ⇠26K endpoints, each running Globus Connect so�ware,
and 46K unique edges (source–destination endpoint pairs for which
at least one transfer has occurred). Figure 2 shows endpoints for
which location data are available [8].

�ese data have limitations: we know relatively li�le about the
endpoints and networks involved in many transfers and li�le or
nothing about competing load. Nevertheless, we can learn some
general features about transfer characteristics and performance, as
we show in subsequent sections.

3 A SIMPLE ANALYTICAL MODEL
We introduce a simple analytical model for themaximum achievable
end-to-end �le transfer rate for a given source and destination. We
validate this model using both experimental and historical data and
draw conclusions about the model’s accuracy.

Figure 2: Globus endpoints, grouped by number of deploy-
ments in a single location [8]. (Some endpoints geolocate
erroneously to the center of countries.)

3.1 Maximum achievable transfer rate
As shown in Figure 1, an end-to-end �le transfer engages three
subsystems: source endpoint, network, and destination endpoint.
�e maximum achievable transfer rate, Rmax , cannot be more than
the minimum of the maximum rates achievable by each subsystem:

Rmax
 min(DRmax ,MMmax ,DWmax), (1)

where DRmax is the maximum achievable disk read rate on the
source endpoint, MMmax is the maximum achievable memory-to-
memory transfer rate from source to destination (including the
network transfer), and DWmax is the maximum achievable disk
write rate on the destination endpoint.

To test Equation 1, we conducted data transfer experiments be-
tween ESnet testbed nodes to determine Rmax , DWmax , DRmax , and
MMmax separately. �e ESnet testbed comprises identical hardware
deployed at three DOE labs in the United States (Argonne: ANL;
Brookhaven: BNL; and Lawrence Berkeley: LBL) and at CERN in
Geneva, Switzerland. Each system features a powerful Linux server
con�gured as a data transfer node (DTN) [11], with an appropriately
con�gured high-speed storage system and 10 Gb/s network link.
We use transfers from /dev/zero to disk and from disk to /dev/null
on each DTN to measure DW and DR separately; from /dev/zero on
source to /dev/null on destination to measure MM; and from disk
on source to disk on destination to measure R. We performed at
least �ve repetitions of each experiment and selected the maximum
observed values as Rmax , DWmax , DRmax , and MMmax .

Table 1 gives our results. We see that all edges are consistent
with Equation 1.

3.2 Extending the model to other endpoints
Of the 46K unique edges in the Globus log records studied here,
36,599 had been used for only a single transfer, 16,562 for �10
transfers, 2,496 for �100 transfers, and 182 for �1000 transfers. We
focus in this work on the 2,496 edges with �100 transfers. For most
of these endpoints, we cannot get the access that would be required
to measure DRmax , DWmax , and MMmax , information that is also
not measured by the GridFTP servers. Instead, we estimate these
quantities, as we now describe.

File characteristics:
What affect transfer performance? -1

Large transfers with big average file size are more likely to have better performance.
I.E, The startup cost is high.

Liu et al. HPDC’17

Tunable transfer parameters
What affect transfer performance? -2

nersc.gov colorado.edu

ucar.edu jlab.org

Aggregated concurrency versus aggregated throughput on the data transfer node.

Liu et al. HPDC’17

Rk

Ssin

Ssout Sdout

Sdin

Gsrc Gdstsrck dstk

Ksout Kdout

KdinKsin

0 5 10 15 20 25
(Gge

0

2

4

6

8

10

12

14

0
GA

3(
 (%

)

27
71

41
2

34
59

27
9

12
10

51
3

35
0

89
4

57
4

38
8 64

1
37

0
37

8 57
0 48

8
37

66 11
08

63
3

15
95

41
94

31
0 36

9
42

0
91

9 81
1

45
6

11
05

33
3

38
8

91
5

LLnear regressLon eXtrePe GraGLent %oostLng

Liu et al. HPDC’17

Model based feature importance Model based feature interpretability

Contention from simultaneous globus transfers (I/O, NIC, CPU & RAM):
What affect transfer performance? -3

Figure 5: File characteristics versus transfer performance.

comprising transfers with average �le size below and above the
median in each group, respectively.

Figure 5 shows our results. We observe that transfers with
smaller total size achieve a lower rate than do transfers with larger
total size. Within each total size bucket, transfers with higher aver-
age �le size achieve a higher rate than do those with lower average
�le size. Note that the average rates for “small �les” and “big �les”
transfers are not always directly comparable across di�erent total
size buckets, because a larger total size does not necessarily mean
a larger average �le size. For example, the average �le size of “big
�les” transfers in the “86 GB total bytes” bucket is less than for the
“big �les” transfers in the “72 GB total bytes” bucket. Similarly, the
reason for the small di�erence between the average rates for “big
�les” and “small �les” in the “91 GB total bytes” bucket is that the
average �le sizes in those two groups are similar.

Figure 6 presents a view of overall transfer characteristics across
all edges. Each transfer is plo�ed according to its transfer size and
estimated transfer distance (great circle distance between source
and destination, a lower bound), with color denoting the transfer
rate. We see again evidence of tremendous variety in transfer char-
acteristics, with transfer sizes ranging from 1 byte to close to a
petabyte and transfer rates from 0.1 bytes/second to a gigabyte/sec-
ond. Transfer rate clearly correlates somewhat with transfer size
and distance, as we would expect. Note the clear distinction be-
tween intracontinental and intercontinental transfers.

4.3 Load measurements
We saw in Figure 3 how transfer rate varies with what we de�ned
in §3.2 as relative external load. �is dependence re�ects the reality
that Globus data transfers occur in a shared resource environment.
Each transfer may contend with both other Globus transfers and
other non-Globus tasks that engage the same source and/or desti-
nation endpoint. We have information about the competing Globus
transfers from Globus logs; here we integrate domain knowledge
of the GridFTP protocol and implementation with Globus log data
to de�ne features that we expect to in�uence transfer rate.

4.3.1 Accounting for competing Globus transfers. �e perfor-
mance of a Globus transfer may be degraded by competing load
from other simultaneous Globus transfers that engage the same
source and/or destination endpoint. We know a lot about these
transfers from Globus logs; the question is how we should translate

Figure 6: Transfer size vs. estimated transfer distance; color
encodes transfer rate.

Table 2: Notation used in this article. We use the lower 15
terms as features in our models.

srck Source endpoint of transfer k.
dstk Destination endpoint of transfer k.
Tsk Start time of transfer k.
Tek End time of transfer k.
Rk Average transfer rate of transfer k.
N�t Number of faults a transfer experienced.
Ksin Contending incoming transfer rate on srck .
Ksout Contending outgoing transfer rate on srck .
Kdin Contending incoming transfer rate on dstk .
Kdout Contending outgoing transfer rate on dstk .
C Concurrency: Number of GridFTP processes.
P Parallelism: Number of TCP channels per process.
Ssin Number of incoming TCP streams on srck .
Ssout Number of outgoing TCP streams on srck .
Sdin Number of incoming TCP streams on dstk .
Sdout Number of outgoing TCP streams on dstk .
Gsrc GridFTP instance count on srck .
Gdst GridFTP instance count on dstk .
Nf Number of �les transferred.
Nd Number of directories transferred.
Nb Total number of bytes transferred.

this information into a small set of features. One obvious feature
is the aggregate data transfer rate of the competing transfers. A
second feature, given that network performance is o�en sensitive
to interactions among concurrent TCP connections, is the number
of TCP connections for the competing transfers. As mentioned

Figure 5: File characteristics versus transfer performance.

comprising transfers with average �le size below and above the
median in each group, respectively.

Figure 5 shows our results. We observe that transfers with
smaller total size achieve a lower rate than do transfers with larger
total size. Within each total size bucket, transfers with higher aver-
age �le size achieve a higher rate than do those with lower average
�le size. Note that the average rates for “small �les” and “big �les”
transfers are not always directly comparable across di�erent total
size buckets, because a larger total size does not necessarily mean
a larger average �le size. For example, the average �le size of “big
�les” transfers in the “86 GB total bytes” bucket is less than for the
“big �les” transfers in the “72 GB total bytes” bucket. Similarly, the
reason for the small di�erence between the average rates for “big
�les” and “small �les” in the “91 GB total bytes” bucket is that the
average �le sizes in those two groups are similar.

Figure 6 presents a view of overall transfer characteristics across
all edges. Each transfer is plo�ed according to its transfer size and
estimated transfer distance (great circle distance between source
and destination, a lower bound), with color denoting the transfer
rate. We see again evidence of tremendous variety in transfer char-
acteristics, with transfer sizes ranging from 1 byte to close to a
petabyte and transfer rates from 0.1 bytes/second to a gigabyte/sec-
ond. Transfer rate clearly correlates somewhat with transfer size
and distance, as we would expect. Note the clear distinction be-
tween intracontinental and intercontinental transfers.

4.3 Load measurements
We saw in Figure 3 how transfer rate varies with what we de�ned
in §3.2 as relative external load. �is dependence re�ects the reality
that Globus data transfers occur in a shared resource environment.
Each transfer may contend with both other Globus transfers and
other non-Globus tasks that engage the same source and/or desti-
nation endpoint. We have information about the competing Globus
transfers from Globus logs; here we integrate domain knowledge
of the GridFTP protocol and implementation with Globus log data
to de�ne features that we expect to in�uence transfer rate.

4.3.1 Accounting for competing Globus transfers. �e perfor-
mance of a Globus transfer may be degraded by competing load
from other simultaneous Globus transfers that engage the same
source and/or destination endpoint. We know a lot about these
transfers from Globus logs; the question is how we should translate

Figure 6: Transfer size vs. estimated transfer distance; color
encodes transfer rate.

Table 2: Notation used in this article. We use the lower 15
terms as features in our models.

srck Source endpoint of transfer k.
dstk Destination endpoint of transfer k.
Tsk Start time of transfer k.
Tek End time of transfer k.
Rk Average transfer rate of transfer k.
N�t Number of faults a transfer experienced.
Ksin Contending incoming transfer rate on srck .
Ksout Contending outgoing transfer rate on srck .
Kdin Contending incoming transfer rate on dstk .
Kdout Contending outgoing transfer rate on dstk .
C Concurrency: Number of GridFTP processes.
P Parallelism: Number of TCP channels per process.
Ssin Number of incoming TCP streams on srck .
Ssout Number of outgoing TCP streams on srck .
Sdin Number of incoming TCP streams on dstk .
Sdout Number of outgoing TCP streams on dstk .
Gsrc GridFTP instance count on srck .
Gdst GridFTP instance count on dstk .
Nf Number of �les transferred.
Nd Number of directories transferred.
Nb Total number of bytes transferred.

this information into a small set of features. One obvious feature
is the aggregate data transfer rate of the competing transfers. A
second feature, given that network performance is o�en sensitive
to interactions among concurrent TCP connections, is the number
of TCP connections for the competing transfers. As mentioned

Figure 5: File characteristics versus transfer performance.

comprising transfers with average �le size below and above the
median in each group, respectively.

Figure 5 shows our results. We observe that transfers with
smaller total size achieve a lower rate than do transfers with larger
total size. Within each total size bucket, transfers with higher aver-
age �le size achieve a higher rate than do those with lower average
�le size. Note that the average rates for “small �les” and “big �les”
transfers are not always directly comparable across di�erent total
size buckets, because a larger total size does not necessarily mean
a larger average �le size. For example, the average �le size of “big
�les” transfers in the “86 GB total bytes” bucket is less than for the
“big �les” transfers in the “72 GB total bytes” bucket. Similarly, the
reason for the small di�erence between the average rates for “big
�les” and “small �les” in the “91 GB total bytes” bucket is that the
average �le sizes in those two groups are similar.

Figure 6 presents a view of overall transfer characteristics across
all edges. Each transfer is plo�ed according to its transfer size and
estimated transfer distance (great circle distance between source
and destination, a lower bound), with color denoting the transfer
rate. We see again evidence of tremendous variety in transfer char-
acteristics, with transfer sizes ranging from 1 byte to close to a
petabyte and transfer rates from 0.1 bytes/second to a gigabyte/sec-
ond. Transfer rate clearly correlates somewhat with transfer size
and distance, as we would expect. Note the clear distinction be-
tween intracontinental and intercontinental transfers.

4.3 Load measurements
We saw in Figure 3 how transfer rate varies with what we de�ned
in §3.2 as relative external load. �is dependence re�ects the reality
that Globus data transfers occur in a shared resource environment.
Each transfer may contend with both other Globus transfers and
other non-Globus tasks that engage the same source and/or desti-
nation endpoint. We have information about the competing Globus
transfers from Globus logs; here we integrate domain knowledge
of the GridFTP protocol and implementation with Globus log data
to de�ne features that we expect to in�uence transfer rate.

4.3.1 Accounting for competing Globus transfers. �e perfor-
mance of a Globus transfer may be degraded by competing load
from other simultaneous Globus transfers that engage the same
source and/or destination endpoint. We know a lot about these
transfers from Globus logs; the question is how we should translate

Figure 6: Transfer size vs. estimated transfer distance; color
encodes transfer rate.

Table 2: Notation used in this article. We use the lower 15
terms as features in our models.

srck Source endpoint of transfer k.
dstk Destination endpoint of transfer k.
Tsk Start time of transfer k.
Tek End time of transfer k.
Rk Average transfer rate of transfer k.
N�t Number of faults a transfer experienced.
Ksin Contending incoming transfer rate on srck .
Ksout Contending outgoing transfer rate on srck .
Kdin Contending incoming transfer rate on dstk .
Kdout Contending outgoing transfer rate on dstk .
C Concurrency: Number of GridFTP processes.
P Parallelism: Number of TCP channels per process.
Ssin Number of incoming TCP streams on srck .
Ssout Number of outgoing TCP streams on srck .
Sdin Number of incoming TCP streams on dstk .
Sdout Number of outgoing TCP streams on dstk .
Gsrc GridFTP instance count on srck .
Gdst GridFTP instance count on dstk .
Nf Number of �les transferred.
Nd Number of directories transferred.
Nb Total number of bytes transferred.

this information into a small set of features. One obvious feature
is the aggregate data transfer rate of the competing transfers. A
second feature, given that network performance is o�en sensitive
to interactions among concurrent TCP connections, is the number
of TCP connections for the competing transfers. As mentioned

It i
s N

OT perf
ec

t

What affect transfer performance? -4

Transfers over ESnet testbed
(less likely to have non-globus load on endpoints)

Transfer over production DTN
(more likely to have non-globus load on endpoints)

ReL = max

✓
Ksout

Rk +Ksout
,

Kdin

Rk +Kdin

◆Contention from non-globus programs (shared environment)

Liu et al. HPDC’17

Rk +K
sout (k)

ROmax
� ⌘ and

Rk +K
din (k)

RImax
� ⌘

⌘ 2 {0.5, 0.6, 0.7, 0.8}

large means less likely to have
unknown load because the max is fixed.

⌘

Select transfers with:

Influence of unknown load:

unknown load affects features’ interpretability coefficient of determination ().R2

Liu et al. HPDC’17What affect transfer performance? -4

It is a useful way to filter out noisy logs, extract information from noisy data

Build a Wide-Area File Transfer Performance Predictor
It is time to

Data transfer: Prediction

14 Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster

Fig. 9: Group transfers by their rate and known load.

Table 3: Prediction error with di↵erent machine learning algorithm on the three
groups.

Algorithm Group Q50(%) Q75(%) Q90(%)

Ridge Regression
1 11.24 18.19 22.63
2 20.04 33.08 64.33
3 35.37 126.54 223.29

XGBRegressor
1 11.85 22.91 25.20
2 8.20 18.06 29.36
3 27.16 51.02 72.49

BaggingRegressor
1 9.54 18.83 25.02
2 9.46 14.81 32.64
3 29.85 51.27 133.48

6.2 Transfers with fewer unknowns

Since transfers with high unknown load is the source of noise when we use them to
train the machine learning model, here we trained the models using transfers with
less unknown load and study how they perform. We compute the relative ‘known
load (KL)’ for a transfer as the ratio of aggregate transfer rate to maximum observed
aggregated throughput. For the source endpoint of the transfer of interest, this is
given by:

KLsrc
k =

Ksout +Rk

DRmax
, (2)

where DRmax is the maximum aggregated outgoing throughput observed from the
source endpoint. Similarly, for the destination endpoint of the transfer of interest, we
have:

KLdst
k =

Kdin +Rk

DWmax
. (3)

where DWmax is the maximum aggregated incoming throughput observed from the
destination endpoint. We then define the relative load of a transfer k as:

KLk = max
�
RLsrc

k , RLdst
k

�
. (4)

Intuitively, KLk measures the fraction of bandwidth usage that has been observed
from Globus transfers. A higher value means less unknown (non-Globus) contending

1. fast (top 50%)

2. rest of 1 but heavily (known) loaded.

3. rest of 2, i.e., lots of unknown

forget old info does not hurt.retraining helpsalgorithm needs to be edge specific

Machine learning based predictor

Interpret the predictor

Liu et al. MLN’18

Get a deep understanding of end-to-end file transfer trends and user behavior.

(How does it look like in reality)

By using Globus GridFTP, about 20 billion files, totaling 1.8 Exabyte between any two of 63,166 unique endpoints
were transferred from 2014 to 2017. On average more than 25,000 files are transferred per minute in 2017.

There are 20.5 billion STOR logs totaling 1.5 EiB received and 19.4 billion RETR logs totaling 1.8 EiB transferred.

(not equal? user can disable data collection feature, no perfect data)

Geographical distribution of bytes moved in, per city in 2017

Dataset characteristic
dataset size, # files, average file size, directories, file type
and dataset sharing behavior

Transfer characteristic
Data integrity checking, encryption, and reliability, transfer
direction, performance, duration and transfer parameters

User behavior
transfer frequency, transfer volume, degree of connection
to endpoints and pattern of users access endpoint

Endpoint
degree of sharing to users, resource utilization (idle time
percentage), source-to-destination edge

Wide Area File Transfer Liu et al. HPDC’18

Data transfer: Characterization

File size is small (the majority
is less than 1MB)

10 15 110 115 110 115 130 135 140

7ransfer rate (bit/s)
0

20

40

60

80

100

Cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 (%

) 2014
2015

2016
2017

Transfer is slow, median < 50
Mbps

2014 2015 2016 2017
Year

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

AY
er

ag
e

ch
ec

k
er

ro
rs

 p
er

 7
B

At least one checksum
failure occurs per 1.26 TB

10 15 110 115 110 115 130 135 140 145

7ransfer dataset size (byte)
0

20

40

60

80

100

Cu
m

ul
at

iv
e

%
 o

f t
ot

al
 tr

an
sf

er
s

2014
2015

2016
2017

Datasets are small (median is a
few MB), has decreased by year.

some of the observations from 40 Billion file transfer records, totaling 3.4 Exabytes of data transferred.

2014 2015 2016 2017
Year

0

10

20

30

40

50

60

3e
rc

en
ta

ge
 o

f a
nn

ua
l t

ot
al

 (%
)

GC62GC6 GC62GC3 GC32GC6 GC32GC3

2014 2015 2016 2017
Year

0

20

40

60

80

Pe
rc

en
ta

ge
 o

f a
nn

ua
l t

ot
al

 (%
)

GC62GC6 GC62GCP GCP2GC6 GCP2GCP

Transfers involve many more downloads (server, e.g., computing
facility to personnel) than uploads (personnel to server).

Liu et al. HPDC’18

Cross-Geography Scientific Data Transferring Trends and Behavior
Zhengchun Liu1, Rajkumar Kettimuthu1, Ian Foster1 and Nageswara S.V. Rao2

(1Argonne National Laboratory, Lemont, IL, USA; 2Oak Ridge National Laboratory, Oak Ridge, TN, USA) 27th HPDC

Summary
Ø Wide area data transfers play an important role in science applications but rely on expensive infrastructure that often delivers disappointing performance in practice.

Ø We present a systematic examination of a large set of data transfer log data to characterize transfer characteristics, including the nature of the datasets transferred,
throughput achieved, user behavior, and resource usage.

Ø Our analysis yields new insights that can help design better data transfer tools, optimize networking and edge resources used for transfers, and improve the performance
and experience for end users.

Ø Our analysis shows that (i) most of the datasets as well as individual files transferred are very small; (ii) data corruption is not negligible for large data transfers; and (iii)
the data transfer nodes utilization is low.

3. Transfer characteristics

1. Background, motivation, and data

2. Dataset characteristics

4. User behaviors

10 15 110 115 110 115 130 135 140 145

7ransfer dataset size (byte)
0

20

40

60

80

100

Cu
m

ul
at

iv
e

%
 o

f t
ot

al
 tr

an
sf

er
s

2014
2015

2016
2017

q Most of the datasets moved over the wide area are small. Specifically, the 50th, 75th, and 95th quartiles of dataset size are 6.3
MB, 221.5 MB, and 55.8~GB, respectively. Counterintuitively, the dataset size has decreased year by year from 2014 to 2017.

q Majority of individual file size is less than 1MB. The result motivate the need for optimizations aimed at small file transfers.
q Image files are the most common file type transferred, followed by raw text files. .dat are likely to be the format that user give

casually. Scientific formats such as .h5(hierarchical data format) and .nc(NetCDF) are in the top 10.

jp
g

pn
g

no
-e

xt tif tx
t

da
t gz h5 nc vt
k

bi
n

jso
n

ou
t

P
at tif
f

xP
l

lo
g

cs
v

te
st hd
f

st
at

s
fa

st
a

fit
s fa cb
f0

1
2
3
4
5
6
7
8
9

3e
rc

en
ta

ge
 to

 to
ta

l (
%

)

0 6 20 40 60 80 100
PercentDge of tiPe Dctive in 2017(%)

0

20

40

60

80

100

Pe
rc

en
tD

ge
 o

f D
71

s
(%

)

Cumulative distribution of idle time percentage; 80%
of endpoints were active less than 6% of the time.

2 4 6 8 10 12 14 16 18
1uPber of endpoints accessed

55

60

65

70

75

80

85

90

95

100

Pe
rc

en
ta

ge
 o

f u
se

rs

2014 2015 2016 2017

Cumulative distribution of the number of
endpoints users have accessed.

DTN utilization is surprisingly low. Since
the DTN requirement is high for high-
throughput DTNs, some good topics for
research would be the use of these computing
resource:
(1)for other purposes;
(2)for complex encoding to deal with data

corruption and;
(3)to compress data to reduce the network

bandwidth consumption.

q Slightly more than half of the users accessed two or fewer endpoints.
q The degree distribution of the number of users per endpoint follows a power-law distribution, similar to

other real-world social network graphs.

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

#
 o

f e
nd

po
in

ts

101 101 103

1umber of users
100

101

101

103

#
 o

f e
nd

po
in

ts

Top 100 Post heavily used endpoints
0

20

40

60

80

Pe
rc

en
ta

ge
 o

f t
iP

e
ac

tiv
e

(%
)

Active means that there is at one transfer to/from the endpoint.

The log-scaled plot shows that the
distribution follows a power law.

10 15 110 115 110 115 130 135 140

)ile size (byte)
0

20

40

60

80

100

Cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 (%

)

2014
2015

2016
2017

Cross-Geography Scientific Data Transferring Trends and Behavior HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Table 2: Petabytes and millions of �les transferred via GridFTP using di�erent tools over the past four years.

Year fts_url_copy libglobus_ftp_client globusonline-fxp globus-url-copy gfal2-util Total
PBytes MFiles PBytes MFiles PBytes MFiles PBytes MFiles PBytes MFiles PBytes MFiles

2014 N/A N/A 111.23 746.59 39.81 1646.10 13.13 816.67 N/A N/A 176.24 3431.78
2015 48.09 77.29 103.21 841.96 52.89 2424.58 19.27 947.78 0.93 6.70 267.33 4435.13
2016 244.46 295.67 105.75 998.96 88.56 3600.78 14.76 850.76 10.03 74.05 466.91 5922.83
2017 342.12 550.57 40.11 885.65 113.45 3901.27 16.89 898.14 45.93 234.65 585.01 6671.79
Total 634.67 923.53 360.3 3,473.16 294.71 11,572.73 64.05 3,513.35 56.89 315.4 1,495.49 20,461.53

2.3 Limitations in GridFTP Usage Logs
Because of privacy considerations [28], the GridFTP toolkit reports
the IP address only of the machine that runs it; in other words, logs
for the STOR command do not have the IP address of the source
endpoint. Similarly there is no IP address of the destination endpoint
for RETR logs. The total number of endpoints (unique IP address)
in the past four years is 63,166. There are 20.5 billion STOR logs
totaling 1.5 exabytes received and 19.4 billion RETR logs totaling
1.8 exabyte transferred. We note that since GridFTP uses unreliable
UDP to collect usage and since users can disable the collection,
the STOR logs and RETR logs are di�erent. Considering the large
number of logs even in a short time—on average there are more
than 25,000 STOR and RETR logs per minute in 2017—accurately
matching a STOR log with a RETR log is almost impossible. On the
other hand, Globus transfer (being a hosted service) logs have this
information and many other details about the transfers. Arguably,
these logs still have some limitations; for example, they do not have
the size of the individual �les in a transfer. Nevertheless, these logs
are much more comprehensive than the GridFTP logs.

2.4 Globus Transfer Service
The Globus transfer service is a cloud-hosted software-as-a-service
implementation of the logic required to orchestrate �le transfers
between pairs of storage systems [3]. A transfer request speci�es,
among other things, a source and destination; the �le(s) and/or
directory(s) to be transferred; and (optionally) whether to perform
integrity checking (enabled by default) and/or to encrypt the data
(disabled by default). It provides automatic fault recovery and au-
tomatic tuning of optimization parameters to achieve high perfor-
mance. Globus can transfer data with either the GridFTP or HTTP
protocols; we focus here on GridFTP transfers, since HTTP support
has been added only recently.

The Globus transfer service distinguishes between the two types
of GridFTP server installations: Globus Connect Personal (GCP),
a lightweight single-user GridFTP server designed to be deployed
on personal computers, and Globus Connect Server (GCS), a mul-
tiuser GridFTP server designed to be deployed on high-performance
storage systems that may be accessed by many users concurrently.

Globus transfer logs recorded 4,813,091 transfers from 2014/01/01
to 2018/01/01, totaling 13.1 billion �les and 305.8 PB. These trans-
fers involved 41,900 unique endpoints and 71,800 unique source-to-
destination pairs (edges), and 26,100 users. We used the MaxMind IP
geolocation service [25] to obtain approximate endpoint locations.
Figure 2 shows the number in each city worldwide. Table 3 shows
the total bytes and �les transferred per year, both within a single

country (nationally) and between countries (internationally). Logs
include the unique name of the source and destination endpoints,
transfer start and end date and time, the user who submitted the
transfer, total bytes, number of �les and number of directories, and
number of faults and �le integrity failures. The logs also have tun-
able parameters. Therefore, the Globus logs are a good supplement
to GridFTP logs in order to characterize wide area data transfer.

Table 3: Data transferred by Globus: petabytes and millions
of �les.

National International Total
Year PBytes MFiles PBytes MFiles PBytes MFiles
2014 41.44 1,865 0.78 26.9 42.32 1,892
2015 53.45 2,763 2.55 94.3 56.39 2,873
2016 90.10 3,929 2.84 110.8 93.60 14,042
2017 109.16 4,162 3.23 94.3 113.50 4,264

2.5 Analysis Framework
Four years of raw GridFTP logs were stored in about 100,000 com-
pressed �les in json format, for a total of 1.2 TB. We parsed and
saved these logs in MongoDB for our analysis. The raw Globus
transfer service logs were saved in millions of tiny �les in json
format. Since Globus logs is much smaller than GridFTP logs, we
parsed these tiny json �les and saved them as one �le by using
the Python pickle module (it implements binary protocols for se-
rializing and deserializing a Python object structure). In our anal-
ysis, we used the Python pandas library [26] to load the Globus
transfer logs. We performed all raw data analysis on a Cray Urika-
GX platform (a high-performance big data analytics platform opti-
mized for multiple work�ows), with the Apache Spark [37] cluster-
computing framework. Anonymized sample data �les are available
at https://github.com/ramsesproject/wan-dts-log. The GridFTP logs
soon will be publicly available for researchers for further analysis
via the data-sharing service of Globus.

3 DATASET CHARACTERISTICS
Users’ transfers consist of one or more �les. GridFTP clients use one
or more control channel sessions to the GridFTP server(s) (for third-
party server-to-server transfers, clients establish control channel
sessions with both the source and destination servers). The GridFTP
server handles each control channel session independently and thus
does not what �les belong to the same transfer. GridFTP logs have
statistics for each individual �le, which could be a separate transfer
in itself or part of a bigger multi-�le or directory transfer. On the

Petabytes and millions of files transferred via GridFTP using different clients.

Cross-Geography Scientific Data Transferring Trends and Behavior HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Table 2: Petabytes and millions of �les transferred via GridFTP using di�erent tools over the past four years.

Year fts_url_copy libglobus_ftp_client globusonline-fxp globus-url-copy gfal2-util Total
PBytes MFiles PBytes MFiles PBytes MFiles PBytes MFiles PBytes MFiles PBytes MFiles

2014 N/A N/A 111.23 746.59 39.81 1646.10 13.13 816.67 N/A N/A 176.24 3431.78
2015 48.09 77.29 103.21 841.96 52.89 2424.58 19.27 947.78 0.93 6.70 267.33 4435.13
2016 244.46 295.67 105.75 998.96 88.56 3600.78 14.76 850.76 10.03 74.05 466.91 5922.83
2017 342.12 550.57 40.11 885.65 113.45 3901.27 16.89 898.14 45.93 234.65 585.01 6671.79
Total 634.67 923.53 360.3 3,473.16 294.71 11,572.73 64.05 3,513.35 56.89 315.4 1,495.49 20,461.53

2.3 Limitations in GridFTP Usage Logs
Because of privacy considerations [28], the GridFTP toolkit reports
the IP address only of the machine that runs it; in other words, logs
for the STOR command do not have the IP address of the source
endpoint. Similarly there is no IP address of the destination endpoint
for RETR logs. The total number of endpoints (unique IP address)
in the past four years is 63,166. There are 20.5 billion STOR logs
totaling 1.5 exabytes received and 19.4 billion RETR logs totaling
1.8 exabyte transferred. We note that since GridFTP uses unreliable
UDP to collect usage and since users can disable the collection,
the STOR logs and RETR logs are di�erent. Considering the large
number of logs even in a short time—on average there are more
than 25,000 STOR and RETR logs per minute in 2017—accurately
matching a STOR log with a RETR log is almost impossible. On the
other hand, Globus transfer (being a hosted service) logs have this
information and many other details about the transfers. Arguably,
these logs still have some limitations; for example, they do not have
the size of the individual �les in a transfer. Nevertheless, these logs
are much more comprehensive than the GridFTP logs.

2.4 Globus Transfer Service
The Globus transfer service is a cloud-hosted software-as-a-service
implementation of the logic required to orchestrate �le transfers
between pairs of storage systems [3]. A transfer request speci�es,
among other things, a source and destination; the �le(s) and/or
directory(s) to be transferred; and (optionally) whether to perform
integrity checking (enabled by default) and/or to encrypt the data
(disabled by default). It provides automatic fault recovery and au-
tomatic tuning of optimization parameters to achieve high perfor-
mance. Globus can transfer data with either the GridFTP or HTTP
protocols; we focus here on GridFTP transfers, since HTTP support
has been added only recently.

The Globus transfer service distinguishes between the two types
of GridFTP server installations: Globus Connect Personal (GCP),
a lightweight single-user GridFTP server designed to be deployed
on personal computers, and Globus Connect Server (GCS), a mul-
tiuser GridFTP server designed to be deployed on high-performance
storage systems that may be accessed by many users concurrently.

Globus transfer logs recorded 4,813,091 transfers from 2014/01/01
to 2018/01/01, totaling 13.1 billion �les and 305.8 PB. These trans-
fers involved 41,900 unique endpoints and 71,800 unique source-to-
destination pairs (edges), and 26,100 users. We used the MaxMind IP
geolocation service [25] to obtain approximate endpoint locations.
Figure 2 shows the number in each city worldwide. Table 3 shows
the total bytes and �les transferred per year, both within a single

country (nationally) and between countries (internationally). Logs
include the unique name of the source and destination endpoints,
transfer start and end date and time, the user who submitted the
transfer, total bytes, number of �les and number of directories, and
number of faults and �le integrity failures. The logs also have tun-
able parameters. Therefore, the Globus logs are a good supplement
to GridFTP logs in order to characterize wide area data transfer.

Table 3: Data transferred by Globus: petabytes and millions
of �les.

National International Total
Year PBytes MFiles PBytes MFiles PBytes MFiles
2014 41.44 1,865 0.78 26.9 42.32 1,892
2015 53.45 2,763 2.55 94.3 56.39 2,873
2016 90.10 3,929 2.84 110.8 93.60 14,042
2017 109.16 4,162 3.23 94.3 113.50 4,264

2.5 Analysis Framework
Four years of raw GridFTP logs were stored in about 100,000 com-
pressed �les in json format, for a total of 1.2 TB. We parsed and
saved these logs in MongoDB for our analysis. The raw Globus
transfer service logs were saved in millions of tiny �les in json
format. Since Globus logs is much smaller than GridFTP logs, we
parsed these tiny json �les and saved them as one �le by using
the Python pickle module (it implements binary protocols for se-
rializing and deserializing a Python object structure). In our anal-
ysis, we used the Python pandas library [26] to load the Globus
transfer logs. We performed all raw data analysis on a Cray Urika-
GX platform (a high-performance big data analytics platform opti-
mized for multiple work�ows), with the Apache Spark [37] cluster-
computing framework. Anonymized sample data �les are available
at https://github.com/ramsesproject/wan-dts-log. The GridFTP logs
soon will be publicly available for researchers for further analysis
via the data-sharing service of Globus.

3 DATASET CHARACTERISTICS
Users’ transfers consist of one or more �les. GridFTP clients use one
or more control channel sessions to the GridFTP server(s) (for third-
party server-to-server transfers, clients establish control channel
sessions with both the source and destination servers). The GridFTP
server handles each control channel session independently and thus
does not what �les belong to the same transfer. GridFTP logs have
statistics for each individual �le, which could be a separate transfer
in itself or part of a bigger multi-�le or directory transfer. On the

Data transferred by Globus (i.e., globusonline-fxp)

By using Globus GridFTP, about 20 billion files, totaling 1.8
Exabyte between any two of 63,166 unique endpoints were
transferred from 2014 to 2017. On average more than
25,000 files are transferred per minute in 2017.

q At least one checksum failure occurs per
1.26 TB. The integrity checking is
needed though it causes extra load.

q The failures are decreasing year by
year. Overall, the service is becoming
increasingly reliable.

q Although some server-to-server transfers
achieve high performance (dozens of
Gbps), most transfer throughput is low.

q There is no clear increasing trend in
terms of transfer performance over time.

2014 2015 2016 2017
Year

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

AY
er

ag
e

ch
ec

k
er

ro
rs

 p
er

 7
B

2014 2015 2016 2017
Year

0

50

100

150

200

250

AY
er

ag
e

fa
ul

ts
 p

er
 7

B

10 15 110 115 110 115 130 135 140

7ransfer rate (bit/s)
0

20

40

60

80

100

Cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 (%

) 2014
2015

2016
2017

10 15 110 115 110 115 130 135 140 145 150 155

%ytes transferred
0

2

4

6

8

10

12

14

16

%
 o

f a
nu

al
 a

ct
iv

e
us

er
s

2014
2015

2016
2017

Distribution of bytes
transferred per user.

q Of all the bytes transferred, 80% are by
just 3% of all users; 10% of the users
transferred 95% of the data.

q The distribution of the number of users
per endpoint follows a power-law
distribution, similar to other real-
world social network graphs.

q Most users do not manually tune the
transfer parameters.

q Thus, transfer tools should be smart
enough to choose the optimal parameters.

A dataset consists of one
or more files and zero or
more directories.

q Most of the datasets transferred by the
Globus transfer service have only one
file. And 17.6% of those datasets (or
11% of the total) have a file size >
100 MB, motivating the need for
striping the single-file transfer over
multiple servers.

q The average file size of most datasets
transferred is small (on the order of
few megabytes).

q Repeated transfers are not common, less
than 7.7% of the datasets are
transferred more than once. When they
do occur, the datasets in question are
distributed mostly from one (or a few)
endpoints to multiple destinations.

5. Endpoint characteristics

We believe our findings can help:
q Resource providers to optimize the resources used for data transferring;
q End users to organize datasets to maximize performance;
q Researchers and tool developers to build new (or optimizing the existing) data transfer protocols and tools; Funding agencies to plan investments.

Acknowledgements
This material was supported in part by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research,
under Contract DE-AC02-06CH11357 and the DOE RAMSES project fund by Scientific Workflow Analysis program managed by Richard
Carlson.

Mostly are image, ~33% are
potentially compressible

Cross-Geography Scientific Data Transferring Trends and Behavior HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Figure 19: Degree of connection for the 100 most-connected endpoints.

Figure 20: Cumulative distribution of the number of end-
points users have accessed.

Figure 21: Number of users per endpoint. The log-scaled plot
(bottom) shows that the distribution follows a power law.

8 CONCLUSIONS
To systematically characterize the wide area transfers for a general
understanding, we analyzed 20.5 billion GridFTP STOR command
logs totaling 1.5 exabytes received and 19.4 billion GridFTP RETR
command logs totaling 1.8 exabytes transmitted, by a total of 63,166
GridFTP servers distributed all over the world in the past four years.
To address the limitations in GridFTP logs, we supplemented our
analysis with 4.8 million transfers logs collected by the Globus

0 6 20 40 60 80 100
PercentDge of tiPe Dctive in 2017(%)

0

20

40

60

80

100

Pe
rc

en
tD

ge
 o

f D
71

s
(%

)

Figure 22: Cumulative distribution of idle time percentage;
80% of endpoints were active less than 6% of the time.

(a) Active time of endpoints.

(b) Endpoint utilization.

Figure 23: Utilization of 100 most heavily used endpoints.

transfer service from 2014/01/01 to 2018/01/01. These transfers,
totaling 13.1 billion �les and 305.8 PB, involved 41,900 unique end-
points, 71,800 unique source-to-destination pairs, and 26,100 users.
To the best of our knowledge, this is the �rst study of its kind to sys-
tematically characterize the wide area transfers from real logs. Our
analysis revealed a number of insights in terms of the utilization

80% of endpoints were active
less than 6% of the time.

Some are really busy though
(more than 98% active)

Cross-Geography Scientific Data Transferring Trends and Behavior HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Figure 4: Distribution of number of �les per dataset.

us to compute the average �le size per transfer, as shown in Figure 5.
We see that for most datasets, the average �le size is just a few
megabytes, with the median average �le size being only 3.44 MB.
However, variance is high, with a standard deviation of 1.6 TB. We
also see that average dataset �le size has decreased year by year.
For example, the 20th percentile of average �le size in 2017 is only
about 10% of the 2014 value.

Figure 5: Cumulative distribution of the dataset average �le
size.

Figure 6 shows the distribution of size of individual �les users
have transferred, extracted from GridFTP logs. Clearly, most of the
�les are small. The 50th and 75th percentiles are 216 and 220 bytes,
respectively. Not much di�erence is seen in terms of small size �les
year by year. However, the di�erence in the big �les (greater than
1 MB) becomes smaller year by year. The 80th percentile in 2017 is
about a quarter of that in 2014.

We note some surprising �ndings. For example, in 2017, users
transferred 1.3 million one-byte �les, and around 1 billion �les were
less than 1 KB in size. Large transfers also occurred. For example, in
2017, 3,536 transfers were greater than 1 TB; the largest was 454 TB.
However, only four �le transfers used the striping [2] feature (i.e.,
used a cluster of nodes at the source and destination to transfer a
large �le).

Table 4 lists the average �le size by application. The table clearly
shows that (fts_url_copy) users tend to transfer big �les and that
Globus transfer service users are more likely to transfer small �les.

10 15 110 115 110 115 130 135 140

)ile size (byte)
0

20

40

60

80

100

Cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 (%

)

2014
2015

2016
2017

Figure 6: Cumulative distribution of individual �le size.

The overall average �le shows an increasing trend over the years.
However, the average �le size for the individual client applications
does not show such a trend.

Observation 3. The average �le size of most datasets transferred is
small (on the order of few megabytes). Majority of individual �le size
is less than 1 MB. These results motivate the need for performance
optimizations aimed at small �le transfers.

3.4 Directory depth
Figure 7 shows the cumulative distribution function of the directory
depth. Most users organize �les using a reasonable subdirectory hi-
erarchy (80% of the datasets have a depth less than 9). The number of
directories in a dataset also in�uences the transfer performance [21]
because there is a cost to create folders. This analysis is bene�cial
for transfer tool designers and performance optimization.

Figure 7: Cumulative distribution of average directory depth

3.5 File type
Researchers have long adopted or designed speci�c data formats
that best represent datasets for di�erent domains. We investigated
the popularity of �le format by looking at the �le extension. Figure 8
shows the distribution of �le extension in which 6.8% of �les have
no extension (marked as no-ext). Surprisingly, the three most com-
monly transferred extensions are images. However, many scienti�c

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhengchun Liu, Rajkumar Ke�imuthu, Ian Foster, and Nageswara S.V. Rao

Figure 2: Geographical distribution of Globus endpoints, with color coding used to show number per city.

other hand, Globus transfer logs have information at the transfer
(single-�le, multi-�le, or directory) level including the number of
�les and total bytes, but they do not have the size of each �le.
Therefore, for multi-�le transfers, we know only the average �le
size. We note that one cannot correlate the Globus transfer logs
and GridFTP logs in order to determine the size of individual �les
in a multi-�le transfer because the GridFTP logs do not have the
�lename and path information. Instead, we use GridFTP logs to
study the trends at the �le level and Globus transfer logs to study
the trends at the transfer level.

3.1 Dataset size
Figure 3 shows the cumulative distribution of dataset size (note that
a dataset consists of one or more �les and zero or more directories).
We see in Figure 3 that most transfers are only a few megabytes in
size. The average transfer size is 63.5 GB, but the median is only
6.4 MB. This is not to say that there are no large transfers: 17.6%
are >1 GB in size and furthermore account for 99.9% of all data
transferred; 0.8% are >1 TB in size and account for 80.6% of all
data transferred; and 97.4% of the bytes were transferred by the top
5% of transfers. Surprisingly, the average transfer size is becoming
smaller, especially the smaller transfers (e.g., transfer size smaller
than 1MB). For example, the 20th percentile in 2017 is only about
1% of the 2014 value; the 80th percentile decreased from about 232
bytes in 2014 to about 226 bytes in 2017.

Observation 1. Most of the datasets moved over the wide area are
small. Speci�cally, the 50th, 75th, and 95th quartiles of dataset size
are 6.3 MB, 221.5 MB, and 55.8 GB, respectively. Counterintuitively,
the dataset size has decreased year by year from 2014 to 2017.

Figure 3: Cumulative distribution of transfer dataset size.

3.2 Number of �les
Figure 4 presents the cumulative distribution of the number of �les
per dataset in each year.

We see in Figure 4 that many transfers—speci�cally, 2,515,278
(63% of the total)—are involved a single �le. However, these transfers
account for a relatively small amount of data: only 10.96% of the
total bytes .

Observation 2. Most of the datasets transferred by the Globus trans-
fer service have only one �le. And 17.6% of those datasets (or 11% of
the total) have a �le size of � 100 MB, motivating the need for striping
the single-�le transfer over multiple servers.

3.3 File size
We know that �le size has a considerable in�uence on transfer
performance [21]. Globus transfer service logs provide the total
number of �les and total bytes for each transfer (dataset), allowing

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhengchun Liu, Rajkumar Ke�imuthu, Ian Foster, and Nageswara S.V. Rao

Figure 2: Geographical distribution of Globus endpoints, with color coding used to show number per city.

other hand, Globus transfer logs have information at the transfer
(single-�le, multi-�le, or directory) level including the number of
�les and total bytes, but they do not have the size of each �le.
Therefore, for multi-�le transfers, we know only the average �le
size. We note that one cannot correlate the Globus transfer logs
and GridFTP logs in order to determine the size of individual �les
in a multi-�le transfer because the GridFTP logs do not have the
�lename and path information. Instead, we use GridFTP logs to
study the trends at the �le level and Globus transfer logs to study
the trends at the transfer level.

3.1 Dataset size
Figure 3 shows the cumulative distribution of dataset size (note that
a dataset consists of one or more �les and zero or more directories).
We see in Figure 3 that most transfers are only a few megabytes in
size. The average transfer size is 63.5 GB, but the median is only
6.4 MB. This is not to say that there are no large transfers: 17.6%
are >1 GB in size and furthermore account for 99.9% of all data
transferred; 0.8% are >1 TB in size and account for 80.6% of all
data transferred; and 97.4% of the bytes were transferred by the top
5% of transfers. Surprisingly, the average transfer size is becoming
smaller, especially the smaller transfers (e.g., transfer size smaller
than 1MB). For example, the 20th percentile in 2017 is only about
1% of the 2014 value; the 80th percentile decreased from about 232
bytes in 2014 to about 226 bytes in 2017.

Observation 1. Most of the datasets moved over the wide area are
small. Speci�cally, the 50th, 75th, and 95th quartiles of dataset size
are 6.3 MB, 221.5 MB, and 55.8 GB, respectively. Counterintuitively,
the dataset size has decreased year by year from 2014 to 2017.

Figure 3: Cumulative distribution of transfer dataset size.

3.2 Number of �les
Figure 4 presents the cumulative distribution of the number of �les
per dataset in each year.

We see in Figure 4 that many transfers—speci�cally, 2,515,278
(63% of the total)—are involved a single �le. However, these transfers
account for a relatively small amount of data: only 10.96% of the
total bytes .

Observation 2. Most of the datasets transferred by the Globus trans-
fer service have only one �le. And 17.6% of those datasets (or 11% of
the total) have a �le size of � 100 MB, motivating the need for striping
the single-�le transfer over multiple servers.

3.3 File size
We know that �le size has a considerable in�uence on transfer
performance [21]. Globus transfer service logs provide the total
number of �les and total bytes for each transfer (dataset), allowing

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhengchun Liu, Rajkumar Ke�imuthu, Ian Foster, and Nageswara S.V. Rao

Table 4: Average �le size (in MB) by application and year.

Year fts_url_copy [5] libglobus_ftp_client globusonline-fxp [34] globus-url-copy [2] gfal2-util [6] Overall

2014 – 142.96 27.31 8.86 – 53.89
2015 652.44 133.78 23.89 18.41 32.72 69.18
2016 856.98 193.83 26.28 45.20 252.22 105.28
2017 719.65 153.42 30.78 29.18 182.29 111.81

applications and researchers use a domain-speci�c data format that
may be suppressed by common �le types.

Figure 8: The 25most-transferred�le types: 61.8% of all�les.

Observation 4. Image �les are the most common �le type trans-
ferred, followed by raw text �les. Scienti�c formats such as .h5 (hier-
archical data format) and .nc (NetCDF) are in the top 10.

3.6 Repeated transfers
We are interested in whether the same datasets are transferred re-
peatedly, either from a single source or from di�erent sources, since
this information can indicate whether multicast and/or caching
schemes have value. Lacking checksum data for all �les, we approx-
imate this sharing phenomenon by computing a �ngerprint for each
dataset in the Globus logs by combining �le names (exclude path,
sort, concatenate as one string) and total dataset size (individual �le
size is not available in Globus logs). This �ngerprint is approximate
in two respects: �rst, it does not capture equivalence if �les are
renamed but contents are not changed; and second, two datasets
with the same �le names and size may have di�erent content. We
ignored single-�le datasets because they are likely to have the sec-
ond mismatching. Nevertheless, we believe that the analysis reveals
useful information.

Having computed �ngerprints, we can then count the number
of times that each �ngerprint is transferred via Globus. Table 5 lists
the 15 datasets that were transferred most often.

Observation 5. Repeated transfers are not common, less than 7.7%
of the datasets are transferred more than once. When they do occur,
the datasets in question are distributed mostly from one (or a few)
endpoints to multiple destinations (i.e.,Nusr < Ndst). We also observe
multiple users transferring the same data to the same destination.

Table 5: Dataset sharing behavior for the 15 most-
transferred datasets. Nsrc and Ndst represent the number of
unique source and destination endpoints, respectively; Nusr
and Ntr s denote the number of users and times transferred,
respectively.

Nsrc Ndst Nusr Ntr s Size
1 120 111 131 10.2GB
3 26 24 73 5.0MB
7 8 3 72 14.7GB
1 58 57 64 9.1GB
9 7 6 53 170.4MB
3 12 33 52 3.1GB
1 4 30 51 3.1GB
1 44 43 51 9.3GB
1 47 47 49 8.3GB
1 4 32 42 365.0MB
2 39 39 40 7.4GB
1 5 4 33 3.7GB
2 6 6 31 17.7GB
1 17 17 25 13.3MB
1 4 17 25 0.3MB

4 TRANSFER CHARACTERISTICS
Here we present our analysis of transfer performance, duration,
and failures and the usage of tuning parameters.

4.1 Checksum, encryption, and reliability
Wide area data transfers involve more than just data movement:
both integrity checking (via a checksum) and encryption can be
applied to the data that is transferred.

Because of well-known limitations of the 16-bit TCP check-
sum [32], transfer tools (including GridFTP) support verifying the
integrity of data transferred by using a 32-bit checksum. For ex-
ample, to verify the integrity of the data transferred, the Globus
transfer service rereads the �le(s) at the source and at the desti-
nation, computes a checksum at each location, and compares the
two resulting checksums. The importance of these checksums is
revealed by the fact that 27,251 of the 3,312,102 Globus transfers
with integrity checking enabled had at least one checksum error
(i.e., one in 121 transfers had at least one checksum error).

Checksums are applied by default but can be disabled by the user
via a transfer �ag. In our dataset, 83.2% of transfers had integrity
checking enabled. Transfer tools also support encrypted data trans-
fer, but this feature is not turned by default in most tools because of
performance overhead. Of the transfers performed by the Globus
transfer service, 2% had encryption enabled.

Cross-Geography Scientific Data Transferring Trends and Behavior HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Figure 4: Distribution of number of �les per dataset.

us to compute the average �le size per transfer, as shown in Figure 5.
We see that for most datasets, the average �le size is just a few
megabytes, with the median average �le size being only 3.44 MB.
However, variance is high, with a standard deviation of 1.6 TB. We
also see that average dataset �le size has decreased year by year.
For example, the 20th percentile of average �le size in 2017 is only
about 10% of the 2014 value.

Figure 5: Cumulative distribution of the dataset average �le
size.

Figure 6 shows the distribution of size of individual �les users
have transferred, extracted from GridFTP logs. Clearly, most of the
�les are small. The 50th and 75th percentiles are 216 and 220 bytes,
respectively. Not much di�erence is seen in terms of small size �les
year by year. However, the di�erence in the big �les (greater than
1 MB) becomes smaller year by year. The 80th percentile in 2017 is
about a quarter of that in 2014.

We note some surprising �ndings. For example, in 2017, users
transferred 1.3 million one-byte �les, and around 1 billion �les were
less than 1 KB in size. Large transfers also occurred. For example, in
2017, 3,536 transfers were greater than 1 TB; the largest was 454 TB.
However, only four �le transfers used the striping [2] feature (i.e.,
used a cluster of nodes at the source and destination to transfer a
large �le).

Table 4 lists the average �le size by application. The table clearly
shows that (fts_url_copy) users tend to transfer big �les and that
Globus transfer service users are more likely to transfer small �les.

Figure 6: Cumulative distribution of individual �le size.

The overall average �le shows an increasing trend over the years.
However, the average �le size for the individual client applications
does not show such a trend.

Observation 3. The average �le size of most datasets transferred is
small (on the order of few megabytes). Majority of individual �le size
is less than 1 MB. These results motivate the need for performance
optimizations aimed at small �le transfers.

3.4 Directory depth
Figure 7 shows the cumulative distribution function of the directory
depth. Most users organize �les using a reasonable subdirectory hi-
erarchy (80% of the datasets have a depth less than 9). The number of
directories in a dataset also in�uences the transfer performance [21]
because there is a cost to create folders. This analysis is bene�cial
for transfer tool designers and performance optimization.

Figure 7: Cumulative distribution of average directory depth

3.5 File type
Researchers have long adopted or designed speci�c data formats
that best represent datasets for di�erent domains. We investigated
the popularity of �le format by looking at the �le extension. Figure 8
shows the distribution of �le extension in which 6.8% of �les have
no extension (marked as no-ext). Surprisingly, the three most com-
monly transferred extensions are images. However, many scienti�c

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhengchun Liu, Rajkumar Ke�imuthu, Ian Foster, and Nageswara S.V. Rao

Table 4: Average �le size (in MB) by application and year.

Year fts_url_copy [5] libglobus_ftp_client globusonline-fxp [34] globus-url-copy [2] gfal2-util [6] Overall

2014 – 142.96 27.31 8.86 – 53.89
2015 652.44 133.78 23.89 18.41 32.72 69.18
2016 856.98 193.83 26.28 45.20 252.22 105.28
2017 719.65 153.42 30.78 29.18 182.29 111.81

applications and researchers use a domain-speci�c data format that
may be suppressed by common �le types.

Figure 8: The 25most-transferred�le types: 61.8% of all�les.

Observation 4. Image �les are the most common �le type trans-
ferred, followed by raw text �les. Scienti�c formats such as .h5 (hier-
archical data format) and .nc (NetCDF) are in the top 10.

3.6 Repeated transfers
We are interested in whether the same datasets are transferred re-
peatedly, either from a single source or from di�erent sources, since
this information can indicate whether multicast and/or caching
schemes have value. Lacking checksum data for all �les, we approx-
imate this sharing phenomenon by computing a �ngerprint for each
dataset in the Globus logs by combining �le names (exclude path,
sort, concatenate as one string) and total dataset size (individual �le
size is not available in Globus logs). This �ngerprint is approximate
in two respects: �rst, it does not capture equivalence if �les are
renamed but contents are not changed; and second, two datasets
with the same �le names and size may have di�erent content. We
ignored single-�le datasets because they are likely to have the sec-
ond mismatching. Nevertheless, we believe that the analysis reveals
useful information.

Having computed �ngerprints, we can then count the number
of times that each �ngerprint is transferred via Globus. Table 5 lists
the 15 datasets that were transferred most often.

Observation 5. Repeated transfers are not common, less than 7.7%
of the datasets are transferred more than once. When they do occur,
the datasets in question are distributed mostly from one (or a few)
endpoints to multiple destinations (i.e.,Nusr < Ndst). We also observe
multiple users transferring the same data to the same destination.

Table 5: Dataset sharing behavior for the 15 most-
transferred datasets. Nsrc and Ndst represent the number of
unique source and destination endpoints, respectively; Nusr
and Ntr s denote the number of users and times transferred,
respectively.

Nsrc Ndst Nusr Ntr s Size
1 120 111 131 10.2GB
3 26 24 73 5.0MB
7 8 3 72 14.7GB
1 58 57 64 9.1GB
9 7 6 53 170.4MB
3 12 33 52 3.1GB
1 4 30 51 3.1GB
1 44 43 51 9.3GB
1 47 47 49 8.3GB
1 4 32 42 365.0MB
2 39 39 40 7.4GB
1 5 4 33 3.7GB
2 6 6 31 17.7GB
1 17 17 25 13.3MB
1 4 17 25 0.3MB

4 TRANSFER CHARACTERISTICS
Here we present our analysis of transfer performance, duration,
and failures and the usage of tuning parameters.

4.1 Checksum, encryption, and reliability
Wide area data transfers involve more than just data movement:
both integrity checking (via a checksum) and encryption can be
applied to the data that is transferred.

Because of well-known limitations of the 16-bit TCP check-
sum [32], transfer tools (including GridFTP) support verifying the
integrity of data transferred by using a 32-bit checksum. For ex-
ample, to verify the integrity of the data transferred, the Globus
transfer service rereads the �le(s) at the source and at the desti-
nation, computes a checksum at each location, and compares the
two resulting checksums. The importance of these checksums is
revealed by the fact that 27,251 of the 3,312,102 Globus transfers
with integrity checking enabled had at least one checksum error
(i.e., one in 121 transfers had at least one checksum error).

Checksums are applied by default but can be disabled by the user
via a transfer �ag. In our dataset, 83.2% of transfers had integrity
checking enabled. Transfer tools also support encrypted data trans-
fer, but this feature is not turned by default in most tools because of
performance overhead. Of the transfers performed by the Globus
transfer service, 2% had encryption enabled.

Cross-Geography Scientific Data Transferring Trends and Behavior HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Figure 9 presents the average number of integrity checking fail-
ure per terabyte transferred by month. We can see that no clear
burst failures occur in one month besides September 2014. We note
that if a user changes a �le during a transfer, this action can be
reported as an integrity failure. We cannot distinguish this from
an actual failure. Data corruption and faults decrease year by year
(Figure 10a,10b).

Figure 10b shows the average number of faults per terabyte trans-
ferred. Faults include network faults, data transfer node failures,
and �le integrity check failures. Overall, the service is becoming
increasingly reliable.
Observation 6. At least one checksum failure occurs per 1.26 TB.
Although integrity checking adds extra load to storage and CPU on
the source and destination endpoints, it is worthwhile. The failures
are decreasing year by year. Only 1.9% of transfers used encryption.

4.2 Transfer direction
As mentioned in subsection 2.4, Globus Connect Personal (GCP) is
a lightweight single-user GridFTP server designed to be deployed
on personal computers, and Globus Connect Server (GCS), is a mul-
tiuser GridFTP server designed to be deployed on high-performance
storage systems that may be accessed by many users concurrently.
Figure 11 shows the trend in terms of number of transfers and bytes
transferred for server-to-server (GCS!GCS) transfers, downloads
from servers to personal machines (GCS!GCP), uploads from per-
sonal machines to servers (GCP!GCS), and personal machines to
personal machines (GCP!GCP). One can see that server-to-server
transfers are dominant in terms of bytes transferred and that down-
loads are equivalent to server-to-server transfers in terms of the
number of transfers.

Table 6: Transfer characteristics of di�erent source and des-
tination types: number of transfers, median performance,
median size, and average �le size (inMB) per transfer (Fa��).

Median
Year Type 1000s Mbps MB Fa��

2014

GCS!GCS 168.77 46.62 104.86 20.97
GCS!GCP 199.44 5.58 3.43 3.31
GCP!GCS 61.05 2.93 6.95 1.12
GCP!GCP 1.54 10.68 2,061.18 4.78

2015

GCS!GCS 513.05 30.16 15.40 7.93
GCS!GCP 678.56 4.92 3.44 3.39
GCP!GCS 109.33 3.87 5.06 1.05
GCP!GCP 2.88 186.52 38,091.87 8.17

2016

GCS!GCS 488.95 27.24 35.51 2.58
GCS!GCP 494.89 13.55 13.00 3.72
GCP!GCS 156.70 4.95 9.54 1.37
GCP!GCP 6.15 26.92 530.29 9.59

2017

GCS!GCS 1,019.14 14.50 7.68 1.64
GCS!GCP 691.56 7.95 8.15 3.55
GCP!GCS 189.48 0.48 0.45 0.07
GCP!GCP 5.24 4.11 24.95 0.94

Observation 7. Transfers involve many more downloads (GCS to
GCP) than uploads (GCP to GCS).

4.3 Performance
Boxplots in Figure 12 show the trend of per dataset transfer perfor-
mance by the type of source and destination endpoints. No consis-
tent trend across di�erent years is observed for several reasons.

• As shown in Table 6 and Figure 11, the transfer size and
average �le size change inconsistently, and these two char-
acteristics have a big in�uence on transfer performance [21].

• The number of active users increases year by year but with
much variance.

• The number of GCPs increases year by year. The perfor-
mance capability and network environment of these PC-
based endpoints are not stable and vary a lot from one to
another.

• The number of active GCS endpoints are 3,095, 2,166, 1,773,
and 1,883, respectively, for the years 2014 to 2017. The num-
ber of transfers increases consistently, meaning that the load
of GCS changes year by year inconsistently.

Figure 13 shows the distribution of per �le transfer performance.
The majority of the �les achieve about 64 Mbps throughput, and
the overall transfer performance has not changed much over time.

Observation 8. Although some server-to-server transfers achieve
high performance (dozens of Gbps), most transfer throughput is low.
For example, the median throughput is only tens of Mbps. There is no
clear increasing trend in terms of transfer performance over time.

4.4 Duration
The transfer time distribution and trend are shown in Figure 14.
More than half of all the transfers �nished in less than 10 seconds.
The longest-running transfer to date ran for six months; this was a
large transfer from one tape archive to another. Of all the transfers,
0.004% ran for more than a month, 0.09% for more than a week,
1.2% for more than a day, and 8% for more than an hour.

4.5 Transfer parameters
Regular FTP sends a �le over a single TCP stream; with Paral-
lelism, a �le’s data blocks are distributed over a speci�ed number
(P) of TCP streams. All TCP streams have the same source and
destination GridFTP server process. Large �les over high-latency
links can bene�t from higher parallelism, since the multiple streams
devoted to a single �le can in e�ect increase the TCP window size
and in addition can provide increased resilience to packet losses.
Beside P , the Globus transfer service has two other application-level
tuning parameters: Concurrency C and Pipelining D.

Concurrency involves starting C independent GridFTP pro-
cesses at the source and destination �le systems. Each of the C
resulting process pairs can then work on the transfer of a separate
�le, which provides for concurrency at the �le system I/O, CPU core,
data transfer nodes (each transfer can involve multiple servers),
and network levels. In general, concurrency is good for multi-�le
transfers because it can drive more �lesystem processes, CPU cores,
and even machine nodes, in addition to opening more network data
streams. Since striping feature is not enabled in Globus, single �le
transfers cannot have C > 1.

Pipelining, D, speeds transfers involving many small �les by
dispatching up to D FTP commands over the same control channel,

Cross-Geography Scientific Data Transferring Trends and Behavior HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Figure 9 presents the average number of integrity checking fail-
ure per terabyte transferred by month. We can see that no clear
burst failures occur in one month besides September 2014. We note
that if a user changes a �le during a transfer, this action can be
reported as an integrity failure. We cannot distinguish this from
an actual failure. Data corruption and faults decrease year by year
(Figure 10a,10b).

Figure 10b shows the average number of faults per terabyte trans-
ferred. Faults include network faults, data transfer node failures,
and �le integrity check failures. Overall, the service is becoming
increasingly reliable.
Observation 6. At least one checksum failure occurs per 1.26 TB.
Although integrity checking adds extra load to storage and CPU on
the source and destination endpoints, it is worthwhile. The failures
are decreasing year by year. Only 1.9% of transfers used encryption.

4.2 Transfer direction
As mentioned in subsection 2.4, Globus Connect Personal (GCP) is
a lightweight single-user GridFTP server designed to be deployed
on personal computers, and Globus Connect Server (GCS), is a mul-
tiuser GridFTP server designed to be deployed on high-performance
storage systems that may be accessed by many users concurrently.
Figure 11 shows the trend in terms of number of transfers and bytes
transferred for server-to-server (GCS!GCS) transfers, downloads
from servers to personal machines (GCS!GCP), uploads from per-
sonal machines to servers (GCP!GCS), and personal machines to
personal machines (GCP!GCP). One can see that server-to-server
transfers are dominant in terms of bytes transferred and that down-
loads are equivalent to server-to-server transfers in terms of the
number of transfers.

Table 6: Transfer characteristics of di�erent source and des-
tination types: number of transfers, median performance,
median size, and average �le size (inMB) per transfer (Fa��).

Median
Year Type 1000s Mbps MB Fa��

2014

GCS!GCS 168.77 46.62 104.86 20.97
GCS!GCP 199.44 5.58 3.43 3.31
GCP!GCS 61.05 2.93 6.95 1.12
GCP!GCP 1.54 10.68 2,061.18 4.78

2015

GCS!GCS 513.05 30.16 15.40 7.93
GCS!GCP 678.56 4.92 3.44 3.39
GCP!GCS 109.33 3.87 5.06 1.05
GCP!GCP 2.88 186.52 38,091.87 8.17

2016

GCS!GCS 488.95 27.24 35.51 2.58
GCS!GCP 494.89 13.55 13.00 3.72
GCP!GCS 156.70 4.95 9.54 1.37
GCP!GCP 6.15 26.92 530.29 9.59

2017

GCS!GCS 1,019.14 14.50 7.68 1.64
GCS!GCP 691.56 7.95 8.15 3.55
GCP!GCS 189.48 0.48 0.45 0.07
GCP!GCP 5.24 4.11 24.95 0.94

Observation 7. Transfers involve many more downloads (GCS to
GCP) than uploads (GCP to GCS).

4.3 Performance
Boxplots in Figure 12 show the trend of per dataset transfer perfor-
mance by the type of source and destination endpoints. No consis-
tent trend across di�erent years is observed for several reasons.

• As shown in Table 6 and Figure 11, the transfer size and
average �le size change inconsistently, and these two char-
acteristics have a big in�uence on transfer performance [21].

• The number of active users increases year by year but with
much variance.

• The number of GCPs increases year by year. The perfor-
mance capability and network environment of these PC-
based endpoints are not stable and vary a lot from one to
another.

• The number of active GCS endpoints are 3,095, 2,166, 1,773,
and 1,883, respectively, for the years 2014 to 2017. The num-
ber of transfers increases consistently, meaning that the load
of GCS changes year by year inconsistently.

Figure 13 shows the distribution of per �le transfer performance.
The majority of the �les achieve about 64 Mbps throughput, and
the overall transfer performance has not changed much over time.

Observation 8. Although some server-to-server transfers achieve
high performance (dozens of Gbps), most transfer throughput is low.
For example, the median throughput is only tens of Mbps. There is no
clear increasing trend in terms of transfer performance over time.

4.4 Duration
The transfer time distribution and trend are shown in Figure 14.
More than half of all the transfers �nished in less than 10 seconds.
The longest-running transfer to date ran for six months; this was a
large transfer from one tape archive to another. Of all the transfers,
0.004% ran for more than a month, 0.09% for more than a week,
1.2% for more than a day, and 8% for more than an hour.

4.5 Transfer parameters
Regular FTP sends a �le over a single TCP stream; with Paral-
lelism, a �le’s data blocks are distributed over a speci�ed number
(P) of TCP streams. All TCP streams have the same source and
destination GridFTP server process. Large �les over high-latency
links can bene�t from higher parallelism, since the multiple streams
devoted to a single �le can in e�ect increase the TCP window size
and in addition can provide increased resilience to packet losses.
Beside P , the Globus transfer service has two other application-level
tuning parameters: Concurrency C and Pipelining D.

Concurrency involves starting C independent GridFTP pro-
cesses at the source and destination �le systems. Each of the C
resulting process pairs can then work on the transfer of a separate
�le, which provides for concurrency at the �le system I/O, CPU core,
data transfer nodes (each transfer can involve multiple servers),
and network levels. In general, concurrency is good for multi-�le
transfers because it can drive more �lesystem processes, CPU cores,
and even machine nodes, in addition to opening more network data
streams. Since striping feature is not enabled in Globus, single �le
transfers cannot have C > 1.

Pipelining, D, speeds transfers involving many small �les by
dispatching up to D FTP commands over the same control channel,

Cross-Geography Scientific Data Transferring Trends and Behavior HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Figure 9 presents the average number of integrity checking fail-
ure per terabyte transferred by month. We can see that no clear
burst failures occur in one month besides September 2014. We note
that if a user changes a �le during a transfer, this action can be
reported as an integrity failure. We cannot distinguish this from
an actual failure. Data corruption and faults decrease year by year
(Figure 10a,10b).

Figure 10b shows the average number of faults per terabyte trans-
ferred. Faults include network faults, data transfer node failures,
and �le integrity check failures. Overall, the service is becoming
increasingly reliable.
Observation 6. At least one checksum failure occurs per 1.26 TB.
Although integrity checking adds extra load to storage and CPU on
the source and destination endpoints, it is worthwhile. The failures
are decreasing year by year. Only 1.9% of transfers used encryption.

4.2 Transfer direction
As mentioned in subsection 2.4, Globus Connect Personal (GCP) is
a lightweight single-user GridFTP server designed to be deployed
on personal computers, and Globus Connect Server (GCS), is a mul-
tiuser GridFTP server designed to be deployed on high-performance
storage systems that may be accessed by many users concurrently.
Figure 11 shows the trend in terms of number of transfers and bytes
transferred for server-to-server (GCS!GCS) transfers, downloads
from servers to personal machines (GCS!GCP), uploads from per-
sonal machines to servers (GCP!GCS), and personal machines to
personal machines (GCP!GCP). One can see that server-to-server
transfers are dominant in terms of bytes transferred and that down-
loads are equivalent to server-to-server transfers in terms of the
number of transfers.

Table 6: Transfer characteristics of di�erent source and des-
tination types: number of transfers, median performance,
median size, and average �le size (inMB) per transfer (Fa��).

Median
Year Type 1000s Mbps MB Fa��

2014

GCS!GCS 168.77 46.62 104.86 20.97
GCS!GCP 199.44 5.58 3.43 3.31
GCP!GCS 61.05 2.93 6.95 1.12
GCP!GCP 1.54 10.68 2,061.18 4.78

2015

GCS!GCS 513.05 30.16 15.40 7.93
GCS!GCP 678.56 4.92 3.44 3.39
GCP!GCS 109.33 3.87 5.06 1.05
GCP!GCP 2.88 186.52 38,091.87 8.17

2016

GCS!GCS 488.95 27.24 35.51 2.58
GCS!GCP 494.89 13.55 13.00 3.72
GCP!GCS 156.70 4.95 9.54 1.37
GCP!GCP 6.15 26.92 530.29 9.59

2017

GCS!GCS 1,019.14 14.50 7.68 1.64
GCS!GCP 691.56 7.95 8.15 3.55
GCP!GCS 189.48 0.48 0.45 0.07
GCP!GCP 5.24 4.11 24.95 0.94

Observation 7. Transfers involve many more downloads (GCS to
GCP) than uploads (GCP to GCS).

4.3 Performance
Boxplots in Figure 12 show the trend of per dataset transfer perfor-
mance by the type of source and destination endpoints. No consis-
tent trend across di�erent years is observed for several reasons.

• As shown in Table 6 and Figure 11, the transfer size and
average �le size change inconsistently, and these two char-
acteristics have a big in�uence on transfer performance [21].

• The number of active users increases year by year but with
much variance.

• The number of GCPs increases year by year. The perfor-
mance capability and network environment of these PC-
based endpoints are not stable and vary a lot from one to
another.

• The number of active GCS endpoints are 3,095, 2,166, 1,773,
and 1,883, respectively, for the years 2014 to 2017. The num-
ber of transfers increases consistently, meaning that the load
of GCS changes year by year inconsistently.

Figure 13 shows the distribution of per �le transfer performance.
The majority of the �les achieve about 64 Mbps throughput, and
the overall transfer performance has not changed much over time.

Observation 8. Although some server-to-server transfers achieve
high performance (dozens of Gbps), most transfer throughput is low.
For example, the median throughput is only tens of Mbps. There is no
clear increasing trend in terms of transfer performance over time.

4.4 Duration
The transfer time distribution and trend are shown in Figure 14.
More than half of all the transfers �nished in less than 10 seconds.
The longest-running transfer to date ran for six months; this was a
large transfer from one tape archive to another. Of all the transfers,
0.004% ran for more than a month, 0.09% for more than a week,
1.2% for more than a day, and 8% for more than an hour.

4.5 Transfer parameters
Regular FTP sends a �le over a single TCP stream; with Paral-
lelism, a �le’s data blocks are distributed over a speci�ed number
(P) of TCP streams. All TCP streams have the same source and
destination GridFTP server process. Large �les over high-latency
links can bene�t from higher parallelism, since the multiple streams
devoted to a single �le can in e�ect increase the TCP window size
and in addition can provide increased resilience to packet losses.
Beside P , the Globus transfer service has two other application-level
tuning parameters: Concurrency C and Pipelining D.

Concurrency involves starting C independent GridFTP pro-
cesses at the source and destination �le systems. Each of the C
resulting process pairs can then work on the transfer of a separate
�le, which provides for concurrency at the �le system I/O, CPU core,
data transfer nodes (each transfer can involve multiple servers),
and network levels. In general, concurrency is good for multi-�le
transfers because it can drive more �lesystem processes, CPU cores,
and even machine nodes, in addition to opening more network data
streams. Since striping feature is not enabled in Globus, single �le
transfers cannot have C > 1.

Pipelining, D, speeds transfers involving many small �les by
dispatching up to D FTP commands over the same control channel,

Cross-Geography Scientific Data Transferring Trends and Behavior HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Figure 14: Transfer duration.

Figure 15: Parameter values used in Globus transfers.

Observation 9. Most users do not manually tune the transfer pa-
rameters (e.g., 94.6% of the transfers use P = 1). Transfer tools should
be smart enough to choose the best parameters for each transfer in
order to achieve maximum performance.

5 USER BEHAVIORS
Users who perform at least one transfer during a given year are
considered active. The number of active users from 2014 to 2017
was 4,602, 6,985, 10,234, and 13,321, respectively.

5.1 Transfer frequency
User behavior is hard to predict, but the statistics can help users
better plan their own transfer. The statistics about user behavior
can also help resource providers schedule maintenance and plan
resource allocation. Figure 16 shows user transfer behavior by day
of week.

(a) Average number of transfers. (b) Average bytes transferred.

Figure 16: Average number of transfers and bytes trans-
ferred, by day of week.

The �gure shows a clear drop in usage on weekends in terms of
both total bytes and number of transfers.

5.2 Transfer volume
Figure 17 shows the distribution of bytes transferred by percentage
of users.

Figure 17: Distribution of bytes transferred per user.

The �gure shows most users transferred dozens of gigabytes.
The few users who transferred hundreds of terabytes accounted for
the majority of total bytes moved. Figure 18 shows the cumulative
distribution of bytes moved by percentage of active users in each
year.

Figure 18: Cumulative distribution of the percent of annual
active users versus the total bytes transferred.

Observation 10. Of all the bytes transferred, 80% are by just 3% of
all users; 10% of the users transferred 95% of the data.

5.3 Degree of connection
Similarly to a person in the social network, we de�ne an endpoint’s
degree of connection as the number of unique endpoints with which
it has engaged in one or more transfers. The degree is a measure of
the endpoint’s popularity.

We compute the degree of each endpoint annually. In 2017, 81%
of the endpoints connected to only one other endpoint, 11% to
two other endpoints, and only 8% to three or more. This is not
to say that there is no widely connected endpoints. For example,
the Blue Waters DTN at the National Center for Supercomputing

Cross-Geography Scientific Data Transferring Trends and Behavior HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Figure 14: Transfer duration.

Figure 15: Parameter values used in Globus transfers.

Observation 9. Most users do not manually tune the transfer pa-
rameters (e.g., 94.6% of the transfers use P = 1). Transfer tools should
be smart enough to choose the best parameters for each transfer in
order to achieve maximum performance.

5 USER BEHAVIORS
Users who perform at least one transfer during a given year are
considered active. The number of active users from 2014 to 2017
was 4,602, 6,985, 10,234, and 13,321, respectively.

5.1 Transfer frequency
User behavior is hard to predict, but the statistics can help users
better plan their own transfer. The statistics about user behavior
can also help resource providers schedule maintenance and plan
resource allocation. Figure 16 shows user transfer behavior by day
of week.

(a) Average number of transfers. (b) Average bytes transferred.

Figure 16: Average number of transfers and bytes trans-
ferred, by day of week.

The �gure shows a clear drop in usage on weekends in terms of
both total bytes and number of transfers.

5.2 Transfer volume
Figure 17 shows the distribution of bytes transferred by percentage
of users.

Figure 17: Distribution of bytes transferred per user.

The �gure shows most users transferred dozens of gigabytes.
The few users who transferred hundreds of terabytes accounted for
the majority of total bytes moved. Figure 18 shows the cumulative
distribution of bytes moved by percentage of active users in each
year.

Figure 18: Cumulative distribution of the percent of annual
active users versus the total bytes transferred.

Observation 10. Of all the bytes transferred, 80% are by just 3% of
all users; 10% of the users transferred 95% of the data.

5.3 Degree of connection
Similarly to a person in the social network, we de�ne an endpoint’s
degree of connection as the number of unique endpoints with which
it has engaged in one or more transfers. The degree is a measure of
the endpoint’s popularity.

We compute the degree of each endpoint annually. In 2017, 81%
of the endpoints connected to only one other endpoint, 11% to
two other endpoints, and only 8% to three or more. This is not
to say that there is no widely connected endpoints. For example,
the Blue Waters DTN at the National Center for Supercomputing

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhengchun Liu, Rajkumar Ke�imuthu, Ian Foster, and Nageswara S.V. Rao

Applications had a degree of connection of 855, 706, and 2,092 for
2016, 2017, and 2014–2017, respectively.

Figure 19 shows the degree of connection for the 100 most-
connected endpoints for each of the four years. Clearly, some end-
points are highly connected, and the degree of connection is in-
creasing over time.

5.4 User access to endpoints
The number of active users in Globus transfer service has increased
steadily year by year, with 4,652, 7,025, 10,313, and 13,433 active
users annually from 2014 to 2017. Here we analyze the number of
endpoints accessed by individual users, in order to understand the
trend of data sharing and collaboration.

As shown in Figure 20, slightly more than half of the users ac-
cessed two or fewer endpoints. Speci�cally, only 41.76% of the users
accessed three or more endpoints; and 1.5% of the users accessed
only one endpoint, which means that they used the Globus transfer
service to copy �les locally in a �re-and-forget manner. Speci�cally,
we found 71,000 transfers for which the source and destination
were the same. These transfers, totaling 17 PB, were done by 2,868
users over 2,090 unique endpoints; 0.34% (90 users) users accessed
more than 20 endpoints.

6 ENDPOINT CHARACTERISTICS
We call an endpoint active in a given year if there is at least one trans-
fer to/from this given endpoint. The number of active endpoints
in 2014 to 2017 was 8,620, 10,478, 13,482, and 16,826, respectively.
Among them, 5,820, 8,592, 12,008, and 15,251 were GCP, respec-
tively; and 2,800, 1,887, 1,474, and 1,575 were GCS, respectively.

6.1 Degree of sharing
Here we study the number of users who have access to an endpoint.
This analysis describes how the endpoints are shared. We focus on
GCS endpoints because a GCP endpoints can be accessed only by
the user who set it up. For a given endpoint, the number of users
accessed represent the degree of sharing. Figure 21 presents the
number of users per endpoint for the top 1000 most-shared GCS
endpoints (the 100th endpoint has 4 users).

We observe a descending linear slope in the log-log plot in Fig-
ure 21, suggesting that the edge (user to endpoint) degree distribu-
tion of vertices (endpoint) follows a power law, which is common
in many real-world networks [19]. Lim et al. [20] observed a similar
distribution for the number of �les generated by a user in a di�erent
project on a petascale �le system.

Observation 11. The degree distribution of the number of users per
endpoint follows a power-law distribution, similar to other real-world
social network graphs.

6.2 Utilization
DTNs are compute systems dedicated for wide area data transfers
in distributed science environments. DTNs typically have GCS
deployed on them. In this section, we study the utilization of those
DTNs. For each minute in 2017, we mark a given DTN as active if
there is at least one transfer over the DTN; otherwise we marked
it as idle. We found that, on average, DTNs are completely idle
(i.e., there is no transfers) for 94.3% of the time. Figure 22 shows

the cumulative distribution of the time that DTNs are active. The
percentage of active time clearly is low. For example, 80% of the
endpoints are active less than 6% of the time.

However, some endpoints are heavily used. For the top 100 most
heavily used endpoints, Figure 23a shows the percentge of time
that at least one transfer was happening over the endpoints. To
investigate how busy the endpoint is when there is at least one
transfer, we assume that the endpoint resource utilization is 100%
when it gets the maximum aggregated throughput (incoming and
outgoing), and we compute the utilization at a given instant as the
ratio of the aggregate throughput at the instant to the maximum
aggregate throughput observed at the endpoint in the entire year.
Figure 23b shows the di�erent percentile values of the utilization of
the top 100 most heavily used endpoints. Clearly, their utilization
is very low.

Usersmay use other data transfer tools, such as BBCP [4], FDT [10],
XDD [30], or Aspera [14], whichmay addmore utilization.We there-
fore used port scanning to determine the installation of other data
transfer tools and found that less than 1% of the endpoints had
other tools installed. This percentage implies that the utilization
reported here is accurate for 99% of the endpoints.

Observation 12. DTN utilization is surprisingly low. Since the DTN
requirement is high for high-throughput DTNs, some good topics for
research would be the use of these computing resource (1) for other
purposes; (2) for complex encoding to deal with data corruption and;
(3) to compress data to reduce the network bandwidth consumption.

6.3 Edge
Figure 24 shows the number of transfers per edge (between source
and destination, unidirectional). Most edges have few transfers:
indeed, a quarter of all edges are involved in just one transfer.
This sparse communication makes performance analysis for such
transfers hard.

7 RELATEDWORK
We previously used Globus logs to explain performance of wide
area data transfers [21]. That work focused on explaining the per-
formance of individual transfers. Here, because we analyze the
whole logs in aggregate, our analysis provides deeper insights into
the temporal evolution of scienti�c datasets transferred over wide
area networks.

As we have seen in this analysis, sometimes truth hidden in the
data is counterintuitive. Rishi et al. [31] studied packet size distribu-
tions in Internet tra�c and observed that the trimodal packet sizes
are around 40, 576, and 1500 Bytes—a change from commonwisdom.
Lan et al. [18] looked at the Internet tra�c data recorded from two
di�erent operational networks and found that a small percentage
of �ows consume most network bandwidth. These observations are
important for tra�c monitoring and modeling purposes.

Lim et al. [20] analyzed 500 days of metadata snapshots of the Spi-
der parallel �le system (PFS) at the Oak Ridge Leadership Comput-
ing Facility to characterize user behavior and data-sharing trends
on the petascale �le system. Their analysis provided deep insights
into the temporal evolution of a heavily used petascale PFS of a
leading supercomputing center. Our work provides a somewhat
similar analysis for wide area data transfers.

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA Zhengchun Liu, Rajkumar Ke�imuthu, Ian Foster, and Nageswara S.V. Rao

Applications had a degree of connection of 855, 706, and 2,092 for
2016, 2017, and 2014–2017, respectively.

Figure 19 shows the degree of connection for the 100 most-
connected endpoints for each of the four years. Clearly, some end-
points are highly connected, and the degree of connection is in-
creasing over time.

5.4 User access to endpoints
The number of active users in Globus transfer service has increased
steadily year by year, with 4,652, 7,025, 10,313, and 13,433 active
users annually from 2014 to 2017. Here we analyze the number of
endpoints accessed by individual users, in order to understand the
trend of data sharing and collaboration.

As shown in Figure 20, slightly more than half of the users ac-
cessed two or fewer endpoints. Speci�cally, only 41.76% of the users
accessed three or more endpoints; and 1.5% of the users accessed
only one endpoint, which means that they used the Globus transfer
service to copy �les locally in a �re-and-forget manner. Speci�cally,
we found 71,000 transfers for which the source and destination
were the same. These transfers, totaling 17 PB, were done by 2,868
users over 2,090 unique endpoints; 0.34% (90 users) users accessed
more than 20 endpoints.

6 ENDPOINT CHARACTERISTICS
We call an endpoint active in a given year if there is at least one trans-
fer to/from this given endpoint. The number of active endpoints
in 2014 to 2017 was 8,620, 10,478, 13,482, and 16,826, respectively.
Among them, 5,820, 8,592, 12,008, and 15,251 were GCP, respec-
tively; and 2,800, 1,887, 1,474, and 1,575 were GCS, respectively.

6.1 Degree of sharing
Here we study the number of users who have access to an endpoint.
This analysis describes how the endpoints are shared. We focus on
GCS endpoints because a GCP endpoints can be accessed only by
the user who set it up. For a given endpoint, the number of users
accessed represent the degree of sharing. Figure 21 presents the
number of users per endpoint for the top 1000 most-shared GCS
endpoints (the 100th endpoint has 4 users).

We observe a descending linear slope in the log-log plot in Fig-
ure 21, suggesting that the edge (user to endpoint) degree distribu-
tion of vertices (endpoint) follows a power law, which is common
in many real-world networks [19]. Lim et al. [20] observed a similar
distribution for the number of �les generated by a user in a di�erent
project on a petascale �le system.
Observation 11. The degree distribution of the number of users per
endpoint follows a power-law distribution, similar to other real-world
social network graphs.

6.2 Utilization
DTNs are compute systems dedicated for wide area data transfers
in distributed science environments. DTNs typically have GCS
deployed on them. In this section, we study the utilization of those
DTNs. For each minute in 2017, we mark a given DTN as active if
there is at least one transfer over the DTN; otherwise we marked
it as idle. We found that, on average, DTNs are completely idle
(i.e., there is no transfers) for 94.3% of the time. Figure 22 shows

the cumulative distribution of the time that DTNs are active. The
percentage of active time clearly is low. For example, 80% of the
endpoints are active less than 6% of the time.

However, some endpoints are heavily used. For the top 100 most
heavily used endpoints, Figure 23a shows the percentge of time
that at least one transfer was happening over the endpoints. To
investigate how busy the endpoint is when there is at least one
transfer, we assume that the endpoint resource utilization is 100%
when it gets the maximum aggregated throughput (incoming and
outgoing), and we compute the utilization at a given instant as the
ratio of the aggregate throughput at the instant to the maximum
aggregate throughput observed at the endpoint in the entire year.
Figure 23b shows the di�erent percentile values of the utilization of
the top 100 most heavily used endpoints. Clearly, their utilization
is very low.

Usersmay use other data transfer tools, such as BBCP [4], FDT [10],
XDD [30], or Aspera [14], whichmay addmore utilization.We there-
fore used port scanning to determine the installation of other data
transfer tools and found that less than 1% of the endpoints had
other tools installed. This percentage implies that the utilization
reported here is accurate for 99% of the endpoints.

Observation 12. DTN utilization is surprisingly low. Since the DTN
requirement is high for high-throughput DTNs, some good topics for
research would be the use of these computing resource (1) for other
purposes; (2) for complex encoding to deal with data corruption and;
(3) to compress data to reduce the network bandwidth consumption.

6.3 Edge
Figure 24 shows the number of transfers per edge (between source
and destination, unidirectional). Most edges have few transfers:
indeed, a quarter of all edges are involved in just one transfer.
This sparse communication makes performance analysis for such
transfers hard.

7 RELATEDWORK
We previously used Globus logs to explain performance of wide
area data transfers [21]. That work focused on explaining the per-
formance of individual transfers. Here, because we analyze the
whole logs in aggregate, our analysis provides deeper insights into
the temporal evolution of scienti�c datasets transferred over wide
area networks.

As we have seen in this analysis, sometimes truth hidden in the
data is counterintuitive. Rishi et al. [31] studied packet size distribu-
tions in Internet tra�c and observed that the trimodal packet sizes
are around 40, 576, and 1500 Bytes—a change from commonwisdom.
Lan et al. [18] looked at the Internet tra�c data recorded from two
di�erent operational networks and found that a small percentage
of �ows consume most network bandwidth. These observations are
important for tra�c monitoring and modeling purposes.

Lim et al. [20] analyzed 500 days of metadata snapshots of the Spi-
der parallel �le system (PFS) at the Oak Ridge Leadership Comput-
ing Facility to characterize user behavior and data-sharing trends
on the petascale �le system. Their analysis provided deep insights
into the temporal evolution of a heavily used petascale PFS of a
leading supercomputing center. Our work provides a somewhat
similar analysis for wide area data transfers.

Motivational / Counter-Intuitive / Interesting observations
Wide Area File Transfer Liu et al. HPDC’18

No increasing dataset size lots of single file transfers
motivates striping Files are really small thus challenging

Lots of image transferred, ~35% are
potentially compressible Data sharing is not that common Data corruption is common while

protection is expensive

Mostly are downloads
transfer rate is not that fast Shouldn’t rely on users tuning!!

User (scientist) behaves similarly as human in social network
Most DTNs are not very busy

Observation motivated optimization — C1

(Real problem motivated)

Target: lots of small files, e.g., median is only a few MiB

0 1000 2000 3000 4000 5000
1umEer of fLles

0

50

100

150

200

250

300

350

400

Tr
an

sf
er

 tL
m

e(
s)

 T=0.0665N+16.5

(xperLment
LLnear fLt

0 1000 2000 3000 4000 5000
1umEer of fLles

0

50

100

150

200

Tr
an

sf
er

 tL
m

e(
s)

 T=0.0340N+18.6

(xperLment
LLnear fLt

Read (Files to Memory), 34 ms
0 1000 2000 3000 4000 5000

1umEer of fLles

0

10

20

30

40

50

60
Tr

an
sf

er
 tL

m
e(

s)

 T=0.0101N+7.0

(xperLment
LLnear fLt

Write (Memory to Files), 10ms

End to end per-file overhead: 66.5 ms

• Storage read overhead is introduced by (previous) file close and (next) file
open at the source (OR);

• Storage write overhead is introduced by (previous) file close and (next)
file open at the destination (OW);

• Network overhead is caused by TCP dynamics due to discontinuity in data
flow caused by OR and/or OW (ON);

<latexit sha1_base64="MOKDEYw3pEBaorCaEhbAgiOdUaQ=">AAAD73icrZNNbxMxEIY3u3yU8JXCkcuIFCm9lCQcQOJS6IVTCdA0lZIo8npnEytee2vPNg2r/A5uiCs/Cf4LEt5khZqPIz69mrE9z7weh6kUlprNXxU/uHX7zt29e9X7Dx4+elzbf3JudWY4drmW2lyEzKIUCrskSOJFapAlocReOD0p8r0rNFZodUbzFIcJGysRC87IhUb7ld+DEMdC5YIwEV9xUR0UCgaYpJP8C2nDxgjuxgi0u2fixAKEBaHI6CjjGEE4h4areSV0Zg8hFhKBS20RmIqqDYXXVEZ1igoYAU0QVg1AY1Xn4+JgtFKfFweHb6GE2KCYGRf9vxgRWhJq6cU2S28HyynSTJvpOgVnmV0RnJ10IJorlghuIcoQSEMkLNfKlckEzatCQcSIQSz17MbBHT4U4C+12Uo5rG3W05IVVfTvKUe1evOouVywLVqlqHvl6oxqfwaR5lmCirhk1vZbzZSGOTMkuCxGw9GmjE/dY/SddG2iHebLIVzAi2UrsQOOXbewjN48kbPE2nkSup0Jo4ndzBXBXbl+RvGbYS5UmhEqvioUZ7Kwtpho569BTnLuBONuRAQHPmGGcXJzv1aFWJhJZq7XOsmLXybU2BZ+tTbd2Rbn7aPWq6P2p3b9+H3p3J73zHvuNbyW99o79j54Ha/rcf+dP/ZT/zK4DL4F34Mfq61+pTzz1Ftbwc+/SApKqA==</latexit>

If there are an infinite amount of buffer, the overall per-file overhead would be Of = max (OR, ON, OW)
If all subsystems have no buffers at all, the overall per-file overhead would be Of = OR + ON + OW

With limited buffers, the overall per-file overhead will be between max (OR, ON, OW) OR + ON + OWand

0 1000 2000 3000 4000 5000
1umEer of fLles

0

20

40

60

80

100

120

140

Tr
an

sf
er

 tL
m

e(
s)

 T=0.0253N+9.6

(xperLment
LLnear fLt

Network (Memory to Memory), 25ms

max(43,10,25) < 66.5 < 34+10+25

Insights into transfer performance between scientific facilities
Liu et al. CCGriD’19

5 10 15 20
ConcuUUency

240

250

260

270

280

290

300

310

320

C3
8

8s
ag

e
(c

oU
e*

se
co

nG
s)

0.7

0.8

0.9

1.0

1.1

7h
Uo

ug
hp

ut
 (*

iB
/s

)

DSbig /380 DSreal
3

4

5

6

7

8

9

7h
ro

ug
hp

ut
 (G

B/
s)

0 1000 2000 3000 4000 5000
1umber of files

20
21
22
23
24
25
26
27
28
29

7r
an

sf
er

 Wi
m

e(
m

in
uW

e)

WiWhouW prefeWching WiWh prefeWching

10 15 110 115 110 115 130

)Lle sLze (byte)

0

2

4

6

8

10

)r
eq

ue
nF

y
(%

)

Real
L380

2 4 8 10 20 30 40 50 60 70 80 90 100 200 300 400 450 500
Concurrency

0

1

2

3

4

5

6

7

8

7h
ro

ug
hp

ut
 (G

B/
s)

File size influences the
performance a lot! In practice, transferred files are small. Current solution hides overhead by

transferring many files concurrently.

But current solution needs higher end
DTNs and consumes more resources.Pre-fetchingPrefetch on source actively reduces

overhead.

An optimization motivated by the insights got from log analysis

Liu et al. CCGriD’19

fread(256KB)

write to socket No

TCP buffer full?

Yes

No

prefetch buffer full?

Yes

prefetch(256KB)

Embracing Elastic: building an elastic data transfer infrastructure
Most DTNs (purposely build systems) are not very busy

Observation motivated optimization — C2

(Real problem motivated)

Fig. 1: Cumulative distribution of idle time percentage: 80%
of DTNs were active less than 6% of the time [3]

Fig. 2: Data transfer throughput vs. DTN CPU usage over eight
days. We highlight two periods in which the data performance
is possibly bottlenecked because of the shortage of CPU
resources [1].

from these 1,800 DTNs for the year 2017, we marked a given
DTN as active if at least one transfer over the DTN occurred;
otherwise we marked it as idle. We did this for each minute.
Figure 1 shows the cumulative distribution of the time that
DTNs are active. Clearly, the percentage of active time is low:
on average, DTNs are completely idle (i.e., no transfers) 94.3%
of the time, and 80% of the DTNs are active less than 6% of
the time.

However, some endpoints are heavily used. Figure 2 shows
the aggregate throughput and CPU utilization for a heavily
used DTN for an eight-day period. We note that the CPU is
potentially the bottleneck in the two highlighted regions.

While the DTN resources are grossly underutilized in many
cases, the DTN resources are insufficient in some cases. Both
these issues can be addressed by integrating the DTN resources
with the compute resources and using cloud technologies to
acquire resources for data transfer on demand.

III. ARCHITECTURE

To address the resource wastage and shortage of dedicated
and static DTNs, we propose an elastic data transfer infrastruc-
ture (DTI) that expands and shrinks dynamically to conserve
resources. To realize an elastic DTI in a non-disruptive fashion,
we propose to reserve minimal resources that will work as a
dedicated DTN; we call this a thin dedicated DTN, which is

a minimal resource replica of a regular DTN. Whenever the
load on the elastic DTI increases above a certain threshold,
additional resources will be dynamically allocated from a pool.
Likewise, when the load decreases below a certain threshold,
excess resources will be sent back to pool.

The elastic DTI architecture, shown in Figure 3, is com-
posed of an orchestrator and agents. The orchestrator runs on
the thin dedicated DTN, while agents run on the thin dedicated
DTN as well as on each on-demand DTN.

Fig. 3: Elastic DTI architecture

Orchestrator: The orchestrator is composed of three main
building blocks: a statistics collector a decision engine, and a
set of tool-specific modules. The statistics collector aggregates
utilization measurements taken by the agents in each DTN.
The decision engine uses the utilization statistics to make
decisions on whether to (de)provision resources. The tool-
specific modules are for making configuration changes to
transfer tools when DTN resources are (de)provisioned (e.g.,
change the endpoint definition in Globus). The orchestrator
interacts with existing resource managers on the campus
cyberinfrastructure through standard APIs.
Agents: An agent collects resource utilization statistics on
DTNs. The communication between agent and the statistics
collector on orchestrator can be implemented via either a
polling model or a push model. In the former, the orches-
trator periodically requests statistics from each agent; in the
latter, agents send measurement updates continuously to the
orchestrator.

IV. DESIGN

The architecture proposed in Section III raise many ques-
tions: What type of resources are more suitable for realizing
an elastic DTI, and how do we (de)provision them? When do
we (de)provision these resources? Where do we (de)provision
resources?

A. Virtualized Infrastructure (what type of resources, and how
to (de)provision?):

Certainly, the minimal resource unit that can be provi-
sioned dynamically is a core and a portion of memory.

Although most DTNs are not busy, some are very
heavily used and sometimes DTN resources are
insufficient, i.e., very high fluctuating demand

Fig. 1: Cumulative distribution of idle time percentage: 80%
of DTNs were active less than 6% of the time [3]

Fig. 2: Data transfer throughput vs. DTN CPU usage over eight
days. We highlight two periods in which the data performance
is possibly bottlenecked because of the shortage of CPU
resources [1].

from these 1,800 DTNs for the year 2017, we marked a given
DTN as active if at least one transfer over the DTN occurred;
otherwise we marked it as idle. We did this for each minute.
Figure 1 shows the cumulative distribution of the time that
DTNs are active. Clearly, the percentage of active time is low:
on average, DTNs are completely idle (i.e., no transfers) 94.3%
of the time, and 80% of the DTNs are active less than 6% of
the time.

However, some endpoints are heavily used. Figure 2 shows
the aggregate throughput and CPU utilization for a heavily
used DTN for an eight-day period. We note that the CPU is
potentially the bottleneck in the two highlighted regions.

While the DTN resources are grossly underutilized in many
cases, the DTN resources are insufficient in some cases. Both
these issues can be addressed by integrating the DTN resources
with the compute resources and using cloud technologies to
acquire resources for data transfer on demand.

III. ARCHITECTURE

To address the resource wastage and shortage of dedicated
and static DTNs, we propose an elastic data transfer infrastruc-
ture (DTI) that expands and shrinks dynamically to conserve
resources. To realize an elastic DTI in a non-disruptive fashion,
we propose to reserve minimal resources that will work as a
dedicated DTN; we call this a thin dedicated DTN, which is

a minimal resource replica of a regular DTN. Whenever the
load on the elastic DTI increases above a certain threshold,
additional resources will be dynamically allocated from a pool.
Likewise, when the load decreases below a certain threshold,
excess resources will be sent back to pool.

The elastic DTI architecture, shown in Figure 3, is com-
posed of an orchestrator and agents. The orchestrator runs on
the thin dedicated DTN, while agents run on the thin dedicated
DTN as well as on each on-demand DTN.

On-demand DTN N

On-demand DTN 1

…

Network
Load

Balancer

Resource Manager

Thin Dedicated DTN

OrchestratorData Transfer
Software

Agent N

Campus Virtualized Resources
Agent 1

Data Transfer
Software

Data Transfer
Software

1. Request
virtual

resource

2. Provision virtual resource

3. Update active on-demand DTN pool

Client requests

Agent

Fig. 3: Elastic DTI architecture

Orchestrator: The orchestrator is composed of three main
building blocks: a statistics collector a decision engine, and a
set of tool-specific modules. The statistics collector aggregates
utilization measurements taken by the agents in each DTN.
The decision engine uses the utilization statistics to make
decisions on whether to (de)provision resources. The tool-
specific modules are for making configuration changes to
transfer tools when DTN resources are (de)provisioned (e.g.,
change the endpoint definition in Globus). The orchestrator
interacts with existing resource managers on the campus
cyberinfrastructure through standard APIs.
Agents: An agent collects resource utilization statistics on
DTNs. The communication between agent and the statistics
collector on orchestrator can be implemented via either a
polling model or a push model. In the former, the orches-
trator periodically requests statistics from each agent; in the
latter, agents send measurement updates continuously to the
orchestrator.

IV. DESIGN

The architecture proposed in Section III raise many ques-
tions: What type of resources are more suitable for realizing
an elastic DTI, and how do we (de)provision them? When do
we (de)provision these resources? Where do we (de)provision
resources?

A. Virtualized Infrastructure (what type of resources, and how
to (de)provision?):

Certainly, the minimal resource unit that can be provi-
sioned dynamically is a core and a portion of memory.

Collaborating with Joaquin Chung

Currently, virtual machines and container [14] are the main
virtualization technologies that can (de)provision resources on
demand. Containers are more attractive because of their short
(de)provisioning times.

On how do we (de)provision these resources, two sce-
narios exist. Scenario (1): Campus already has a virtualized
infrastructure with resource managers such as OpenStack [15],
CloudStack [16], or Kubernetes [17], to serve the needs of
their users. Scenario (2): No virtualized resources on campus.
For scenario (1), orchestrator can (de)provision resources for
on-demand DTN using the appropriate APIs. We note that
on-demand DTNs need networking resources in addition to
CPU and memory resources. However, the network is a shared
resource and we cannot guarantee exclusive access to it. For
scenario (2), a portion of unused DTN resources can be made
available through a container orchestration layer to scavenger
jobs, jobs that can be killed as and when data transfer load
increases.

B. Decision Making (when to (de)provision?):
The question of when to provision or remove resource can

be answered by applying different schemes on the decision
engine. These schemes can be as simple as using thresholds
over a monitored resource usage metric (e.g., CPU utilization),
or provisioning a new resource for every new data transfer,
and as complex as machine learning based decision making.
A simple static threshold may work in such cases where the
system load does not vary much. However, there is no “one
size fits all” configuration for each of the parameters because
the external load, and user behavior change over time and vary
from endpoint to endpoint.

C. Resource Management (where to (de)provision?):
High performance computing (HPC) resources managers

and container orchestration systems (e.g., Kubernetes) will
place a new resource on a host machine that has sufficient
capacity to fulfill the new resource requirements. Usually, this
capacity is defined in terms of available cores and memory,
without taking into account available network bandwidth.
However, for an elastic DTI, available network capacity is
crucial. Placing an on-demand DTN on a network-congested
node is counterproductive. We may be able to extend Kuber-
netes’ code to take into account network throughput for where
to place a new resource.

D. Design Space

TABLE I: Elastic DTI Design Space
When Where

Usage threshold Available core count
Usage threshold Available network capacity
Upon arrival of new transfer Available core count
Upon arrival of new transfer Available network capacity

Table I shows the design space for our elastic DTI (refer
to Section V for our implementation choices). Assuming con-
tainers as the minimal resource unit and that existing resource

managers can be queried to (de)provision resources, our design
space is reduced to two dimensions: when to (de)provision,
and where to (de)provision. For when to (de)provision, we
consider two scenarios: usage threshold and upon arrival of
new transfer. The usage threshold follows a time-share model,
in which one container can serve many transfers. When the us-
age of the elastic DTI containers is above a high threshold we
request more resources from the resource manager, whereas
we will remove an active resource after the utilization goes
below a low threshold. The “upon arrival” approach follows
an exclusive model in which we deploy a new container for
every new transfer. For where to (de)provision, we consider the
current state-of-the-art in resource managers (i.e., consider the
available core count) and an enhanced metric that considers
the available network capacity.

V. IMPLEMENTATION

In this section we present our implementation choices for
an elastic DTI. Our orchestrator and agents collect statistics
on CPU usage, network throughput, and active transfers. We
chose Globus GridFTP as our data transfer software, because
the extensive logs we had already collected [3] helped us create
traffic traces for the evaluation. We used containers as the type
of resources we can (de)provision, and Docker as the campus
resource manager. For this proof of concept, we implemented
the communication between the orchestrator and agents using
a polling model. Section IV present two scenarios on how to
(de)provision resources. In this paper we focus on scenario 1,
because more and more campuses are turning to virtualized
resources as already mentioned in Section I.

We realized an instantiation of our proposed elastic DTI
in the National Science Foundation’s Chameleon testbed.
We implemented the orchestrator and agents for our elastic
DTI in Python and the communication between them using
gRPC [18]. We also interact with Docker through a Python
library and gRPC communication. The agents collect CPU and
network utilization statistics with a sampling frequency of one
second. The CPU utilization is collected per container, while
the network throughput is collected per bare metal server. The
orchestrator polls agents every second, computes thresholds,
and decides whether a container needs to be provisioned or
removed.

VI. EVALUATION

We evaluated our elastic DTI using both simple static
thresholds (defined as percentages of average CPU utilization),
and provision upon arrival of new transfer and remove when
the transfer is finished. For the static threshold approach, we
used three (de)provisioning schemes defined by a combination
of high and low thresholds, and we use the “HIGH/LOW”
notation for naming our schemes. We kept the low CPU usage
threshold at 10% for each scheme and varied the high usage
threshold as 30%, 50%, and 70%; we also tested a forth
scheme with low threshold 20% and high threshold 70%. We
did preliminary evaluations using a trace with transfers whose
characteristics follow that of real datasets (both file size and

Fig. 4: CPU resources saved with respect to a typical DTN
deployment

Fig. 5: Slowdown for several elastic DTI schemes with respect
to baseline

dataset size) [3] and whose arrival times follow a Poisson
distribution with � = 3 seconds.

Initial results show that at most >95% of the CPU resources
can be saved when compared with a typical DTN deployment
(see Figure 4), with the slowdown incurred by around 50%
of the transfers being compensated by speedups for an equal
proportion of transfers (see Figure 5). However, when using
the “upon arrival” scheme for deciding when to provision,
CPU saving can only go as high as 30%. By looking at both
Figures 4 and 5, we can infer that a tradeoff exist between
increasing the number of resources saved, and reducing the
slowdown. It is important to note that the “upon arrival”
scheme was implemented in a naive way. The when to pro-
vision still happens upon arrival of each new transfer, but the
where to provision happens in a round robin fashion iterating
over the existing host nodes.

VII. CONCLUSION

The Science DMZ as a network design pattern has had a
notable impact on the science community by improving the
performance of wide-area file transfers significantly. Yet, it
falls short in efficient utilization of data transfer nodes. We
presented the design, implementation, and initial evaluation of
an elastic data transfer infrastructure that grows and shrinks

based on demand. We realized an instantiation of this elastic
DTI in the National Science Foundation’s Chameleon testbed
and showed that up to ⇠95% of the CPU resources can
be saved when compared with a typical DTN deployment.
Furthermore, the slowdown incurred by around 50% of the
transfers is compensated by speedups for an equal proportion
of transfers.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, under contract number
DE-AC02-06CH11357.

REFERENCES

[1] R. Kettimuthu, Z. Liu, D. Wheeler, I. Foster, K. Heitmann, and F. Cap-
pello, “Transferring a petabyte in a day,” 4th International Workshop on
Innovating the Network for Data Intensive Science (INDIS) 2017, pp.
1–11, Nov 2017.

[2] J. Crichigno, E. Bou-Harb, and N. Ghani, “A comprehensive tutorial on
Science DMZ,” IEEE Communications Surveys & Tutorials, 2018.

[3] Z. Liu, R. Kettimuthu, I. Foster, and N. S. Rao, “Cross-geography
scientific data transfer trends and user behavior patterns,” in 27th ACM
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’18. New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3208040.3208053

[4] R. F. da Silva, S. Callaghan, and E. Deelman, “On the use of
burst buffers for accelerating data-intensive scientific workflows,” in
12th Workshop on Workflows in Support of Large-Scale Science,
ser. WORKS ’17. New York, NY, USA: ACM, 2017, pp. 2:1–2:9.
[Online]. Available: http://doi.acm.org/10.1145/3150994.3151000

[5] Z. Liu, R. Kettimuthu, S. Leyffer, P. Palkar, and I. Foster,
“A mathematical programming- and simulation-based framework to
evaluate cyberinfrastructure design choices,” in IEEE 13th International
Conference on e-Science, Oct 2017, pp. 148–157. [Online]. Available:
http://doi.org/10.1109/eScience.2017.27

[6] “Nuclear physics network requirements workshop, 2008,”
http://science.energy.gov/⇠/media/ascr/pdf/program-documents/docs/
Np net req workshop.pdf.

[7] Y. Sun, S. Marru, and B. Plale, “Experience with bursty workflow-driven
workloads in LEAD science gateway,” in TeraGrid Conference, 2008.

[8] “Clemson University continues data center innovation with
next generation network built on big switch technol-
ogy,” https://www.bigswitch.com/press-releases/2015/08/06/
clemson-university-continues-data-center-innovation-with-next-generation.

[9] “Vapor - collaborative cloud computing,” http://vapor.gatech.edu/.
[10] “State University of New York selects Oracle cloud at customer to

modernize the learning experience for students and staff,” https://www.
oracle.com/corporate/pressrelease/suny-oracle-cloud-062817.html.

[11] K. Chard, E. Dart, I. Foster, D. Shifflett, S. Tuecke, and J. Williams,
“The Modern Research Data Portal: A design pattern for networked,
data-intensive science,” PeerJ Computer Science, vol. 4, p. e144, 2018.

[12] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, and I. Foster, “The Globus striped GridFTP framework
and server,” in ACM/IEEE Conference on Supercomputing, ser. SC
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 54–.
[Online]. Available: https://doi.org/10.1109/SC.2005.72

[13] B. Tierney, J. Metzger, J. Boote, E. Boyd, A. Brown, R. Carlson,
M. Zekauskas, J. Zurawski, M. Swany, and M. Grigoriev, “perfSONAR:
Instantiating a global network measurement framework,” SOSP Work-
shop on Real Overlays and Distributed Systems, 2009.

[14] linuxcontainers.org, “Linux containers,” https://linuxcontainers.org/.
[15] “Openstack,” https://www.openstack.org, accessed: 2018-01-29.
[16] “Apache cloudstack,” https://cloudstack.apache.org/, accessed: 2018-01-

29.
[17] “Kubernetes - Production Grade Container Orchestration,” https://

kubernetes.io/, accessed: 2019-05-20.
[18] “gRPC,” https://grpc.io/, accessed: 2018-12-14.

Fig. 4: CPU resources saved with respect to a typical DTN
deployment

70/20 70/10 50/10 30/10 USon
AUUival

3olicy

0

1

2

3

4

5

6

7

6l
ow
do
w
n

C3U+Count C3U+1et

Fig. 5: Slowdown for several elastic DTI schemes with respect
to baseline

dataset size) [3] and whose arrival times follow a Poisson
distribution with � = 3 seconds.

Initial results show that at most >95% of the CPU resources
can be saved when compared with a typical DTN deployment
(see Figure 4), with the slowdown incurred by around 50%
of the transfers being compensated by speedups for an equal
proportion of transfers (see Figure 5). However, when using
the “upon arrival” scheme for deciding when to provision,
CPU saving can only go as high as 30%. By looking at both
Figures 4 and 5, we can infer that a tradeoff exist between
increasing the number of resources saved, and reducing the
slowdown. It is important to note that the “upon arrival”
scheme was implemented in a naive way. The when to pro-
vision still happens upon arrival of each new transfer, but the
where to provision happens in a round robin fashion iterating
over the existing host nodes.

VII. CONCLUSION

The Science DMZ as a network design pattern has had a
notable impact on the science community by improving the
performance of wide-area file transfers significantly. Yet, it
falls short in efficient utilization of data transfer nodes. We
presented the design, implementation, and initial evaluation of
an elastic data transfer infrastructure that grows and shrinks

based on demand. We realized an instantiation of this elastic
DTI in the National Science Foundation’s Chameleon testbed
and showed that up to ⇠95% of the CPU resources can
be saved when compared with a typical DTN deployment.
Furthermore, the slowdown incurred by around 50% of the
transfers is compensated by speedups for an equal proportion
of transfers.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, under contract number
DE-AC02-06CH11357.

REFERENCES

[1] R. Kettimuthu, Z. Liu, D. Wheeler, I. Foster, K. Heitmann, and F. Cap-
pello, “Transferring a petabyte in a day,” 4th International Workshop on
Innovating the Network for Data Intensive Science (INDIS) 2017, pp.
1–11, Nov 2017.

[2] J. Crichigno, E. Bou-Harb, and N. Ghani, “A comprehensive tutorial on
Science DMZ,” IEEE Communications Surveys & Tutorials, 2018.

[3] Z. Liu, R. Kettimuthu, I. Foster, and N. S. Rao, “Cross-geography
scientific data transfer trends and user behavior patterns,” in 27th ACM
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’18. New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3208040.3208053

[4] R. F. da Silva, S. Callaghan, and E. Deelman, “On the use of
burst buffers for accelerating data-intensive scientific workflows,” in
12th Workshop on Workflows in Support of Large-Scale Science,
ser. WORKS ’17. New York, NY, USA: ACM, 2017, pp. 2:1–2:9.
[Online]. Available: http://doi.acm.org/10.1145/3150994.3151000

[5] Z. Liu, R. Kettimuthu, S. Leyffer, P. Palkar, and I. Foster,
“A mathematical programming- and simulation-based framework to
evaluate cyberinfrastructure design choices,” in IEEE 13th International
Conference on e-Science, Oct 2017, pp. 148–157. [Online]. Available:
http://doi.org/10.1109/eScience.2017.27

[6] “Nuclear physics network requirements workshop, 2008,”
http://science.energy.gov/⇠/media/ascr/pdf/program-documents/docs/
Np net req workshop.pdf.

[7] Y. Sun, S. Marru, and B. Plale, “Experience with bursty workflow-driven
workloads in LEAD science gateway,” in TeraGrid Conference, 2008.

[8] “Clemson University continues data center innovation with
next generation network built on big switch technol-
ogy,” https://www.bigswitch.com/press-releases/2015/08/06/
clemson-university-continues-data-center-innovation-with-next-generation.

[9] “Vapor - collaborative cloud computing,” http://vapor.gatech.edu/.
[10] “State University of New York selects Oracle cloud at customer to

modernize the learning experience for students and staff,” https://www.
oracle.com/corporate/pressrelease/suny-oracle-cloud-062817.html.

[11] K. Chard, E. Dart, I. Foster, D. Shifflett, S. Tuecke, and J. Williams,
“The Modern Research Data Portal: A design pattern for networked,
data-intensive science,” PeerJ Computer Science, vol. 4, p. e144, 2018.

[12] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, and I. Foster, “The Globus striped GridFTP framework
and server,” in ACM/IEEE Conference on Supercomputing, ser. SC
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 54–.
[Online]. Available: https://doi.org/10.1109/SC.2005.72

[13] B. Tierney, J. Metzger, J. Boote, E. Boyd, A. Brown, R. Carlson,
M. Zekauskas, J. Zurawski, M. Swany, and M. Grigoriev, “perfSONAR:
Instantiating a global network measurement framework,” SOSP Work-
shop on Real Overlays and Distributed Systems, 2009.

[14] linuxcontainers.org, “Linux containers,” https://linuxcontainers.org/.
[15] “Openstack,” https://www.openstack.org, accessed: 2018-01-29.
[16] “Apache cloudstack,” https://cloudstack.apache.org/, accessed: 2018-01-

29.
[17] “Kubernetes - Production Grade Container Orchestration,” https://

kubernetes.io/, accessed: 2019-05-20.
[18] “gRPC,” https://grpc.io/, accessed: 2018-12-14.

Preliminary results: Policy evaluation and resource saving compare with
static

Dynamic Science DMZ architecture

Let AI (Reinforcement Machine Learning) Optimize Data Transfer
Node Smartly and Automatically

Lots of dynamic things affect file transfer performance, can we

Observation motivated optimization — C3

(Real problem motivated)

File Transfer
Tool(e.g. GridFTP)

Knowledge
Engine

User

A pool of
files to
transfer

Submission
Request

Response

Query

Network
Chunk size
Concurrency
Parallelism
… …

File System

Learning

Achieved
Performance

(reward)
Action

CPU load
RAM load
Network load
Storage load
… …

Environment

1

2

3

4

5

26

Destination
DTN

Current state

Transfer
with action

Actor Neural
Network

Critic Neural
Network

Transfer the
file chunk Actor Neural

Network Critic Neural
Network

Reward (Average total outgoing throughput)
concurrency,
parallelism,
chunk size

L
�
✓Q

�St

St

At

At+1
St+1

Q(St, At)

Q(St+1, At+1)

⌧✓µ + (1� ⌧) ✓µ
T

! ✓µ
T

⌧✓Q + (1� ⌧) ✓Q
T

! ✓Q
T

Update weights using

rAtQ (St, At)r✓µµ (St)Update weights using policy gradient

Update target

Update target

r✓QL
minimize L

at least 11.3%
improvement compared

with the heuristic
approach

Data transfer: Optimization(smartDTN)

Motivated

Proposed

Achieved Implemented

J. FGCS 2018

Two more success stories about file transfer

A comprehensive study of wide area data movement at a scientific computing facility

Model to achieve sustainable high-throughput, e.g., 1PiB in 6 hours and lessons learnt

we characterized the network traffic of a computer facility’s DTNs at multiple levels, from user
transfer requests down to TCP flows. Load imbalances and opportunities for improvement are
identified for planning system upgrades and future investments. SNTA@ICDCS 2018

Lesson learnt and model built to move one PiB in a day for pipeline execution of a cosmology
workflow. Then, one PiB in six hours was achieved in 2018.

Several more are proposed to funding agencies seeking support.

Combine, correlate and analyze logs of a Computing Facility

(ongoing)

Darshan: Instruments the I/O behavior of production applications. It records statistics, such as the

number of files opened, time spent performing I/O, and the amount of data accessed by an application
as well as the I/O library used.

Autoperf: collects hardware performance counter and MPI information.

Scheduler logs: Job properties, e.g., run time, computing resource requested / used.

ModSim’19

Observations:

Overall, nearly 30% of the total machine time was spent within MPI. But, about 30% of tasks almost did
not spend any time on MPI.

Nearly half of the tasks spent less than 2% of their total machine time on file I/O and nearly 80% of tasks
spent almost zero time on file I/O. These findings reveals that computation is still the most intensive
operations of HPC applications.

Runtime break
Darshan logs capture the time spent on each file
using either MPIIO or POSIX IO library.

Autoperf logs record the average time spent on MPI
functions for all processes and some hardware
performance monitors.

ModSim’19

File I/O libraries
MPIIO (and high level libraries like HDF5, netCFD based on it) and POSIX are two libraries used. Darshan
records the time spent on each library calls. As for which file I/O library are mostly used in HPC applications,
we studied the number of applications that used POSIX or MPIIO, or both.

Observations: In terms of I/O library used frequency, POSIX is much more widely used than MPIIO.

Nevertheless, MPIIO consumed significantly more (> 3X) machine time than POSIX did. Although POSIX
are used for nearly all applications, it only consumed about 25% of the machine time. This may indicate
that developers mostly use MPIIO for large data read and write.

Motivates optimizing storage system for R/W small files using POSIX?

ModSim’19

Hardware performance - FLOPS

FLOPS is a commonly used measurement of supercomputer.
Counter PEVT_INST_QFPU_ALL gives the total number of floating
point operations done per MPI process. Thus,

PEVT_INST_QFPU_ALL * numProcessesOnNode /
elapsedTime

Gives the achieved FLOPS per node.

The peaks floating point performance of PowerPC A2 processor is (1.66 GHz) x (16 cores) x (4 vector
lane) x (2 operations per FMA) = 212.48 GFLOPS/node.

Surprising? Recall our observation “Overall, nearly 30% of the total machine time was spent within MPI. But, about 30% of tasks almost did
not spend any time on MPI.” HPC application does much more than floating point operation; theoretical FLOPS is hard to achieve.

ModSim’19

Hardware performance - OPS
PEVT_INST_XU_ALL + PEVT_INST_QFPU_ALL gives the
total number of operation.

Similarly,

(PEVT_INST_XU_ALL + PEVT_INST_QFPU_ALL) *
numProcessesOnNode / elapsedTime
Gives the archived operations per second per node.

Intuitively, for each float pointing point operation, there are
multiple other operations. Here we calculated:

PEVT_INST_XU_ALL / PEVT_INST_QFPU_ALL

to get insights of the average number of non-floating operations
for each floating point operation.

Observations: Most applications are not floating point
operations intensive. Theoretical FLOPS is really hard to achieve
by actual applications.

ModSim’19

Hardware performance - Memory access
Counter PEVT_L2_FETCH_LINE and PEVT_L2_STORE_LINE give the
total number of RAM FETCH and STORE traffic separately. Each
STORE/FETCH transfers 128 bytes. Thus we can calculate the archived
main memory throughput.

Each Mira node is equipped with 16GB 1.333GHz DDR3 memory with
peak 42.6~GB/s bandwidth.

Thanks to cache, the archived rate can be more than RAM’s limit. More
than 40% of the jobs achieved more than RAM’s limit due to proper use
of cache.

In order to investigate if an application is memory bounded or
computing bounded, we calculate the average main memory traffic (128
bytes) per operations. [we need memory latency and IPS to conclude]

ModSim’19

Task grouping

t-SNE visualization of task characterization

We extract features to represent a task:

Fraction of communication time

Fraction of MPI-IO time

Operations per second and FLOPS

Process per Node

RAM fetch/store per cycle

and more…

And then visualize high dimension features with

t-SNE. Each application is marked by a unique

color when plotting.

Observations: We can clearly see clusters in the
feature representation. We may be able to seek
explanations for those clusters with users’ project
information.

Observations: It is clearly possible to build “signature" of each task based on the existing logs, with this
"signature", we are able to:

(1) understand if the running application is what proposed to run;

(2) Since "signature" is built on performance counters, we can use it to group applications (taxonomy,

e.g., I/O intensive, communication intensive, computing intensive or memory bounded) for optimization
and special servicing purpose.

(3) Adding energy consumption dimension could help categorize applications / projects / users for better
energy-cap control.

(4) Trained a XGB classifier with 70% tasks for top 20 (covers 94.9% tasks) applications in 2018, testing
accuracy is 99.5%. i.e., given 6 “signature” features, classifier can figure out which application it is,
proves the interpretability of the features.

ModSim’19

It’s about data science and machine learning, can we help a little
big for lightsource facility data?

Intelligence: TomoGAN
Motivation:
(1) lower X-ray dosage for sensitive sample like bio-sample;

(2) faster experiment to capture dynamic features like a fast chemical reaction process.

(3) smaller dataset and less computation for [near] realtime tomography imaging.

Liu et al. arXiv: 1902.07582
MMLS’19

TomoGAN
A Conditional Generative Adversarial Network for Low-Dose X-Ray Tomography

On the left, the results of conventional reconstruction, which are highly
noisy. On the right, those same results after denoising with TomoGAN.

Model is trained with one shale sample imaged at APS and tested with
another shale sample imaged at Swiss Light Source (SLS).

TomoGAN: Low-Dose X-Ray Tomography with Generative Adversarial Networks
Zhengchun Liu1, Tekin Bicer1,2, Rajkumar Kettimuthu1, Doga Gursoy2, Francesco De Carlo2 and Ian Foster1

(1Data Science and Learning Division, Argonne National Laboratory; 2X-ray Science Division, Argonne National Laboratory)

4. One more successful case

Summary: Synchrotron-based X-ray tomography is a noninvasive imaging technique that allows for reconstructing the internal structure of materials at high spatial resolutions. Only limitted
X-ray is allowed for in situ or dose-sensitive experiments to avoid sample damage or capture relevant dynamic phenomena. These low X-ray dose imaging conditions yield noisy
measurements that significantly impact the quality of the resulting reconstructions. We present TomoGAN, a denoising technique based on GAN, for low-dose imaging conditions. TomoGAN
has been evaluated in two photon-budget-limited experimental conditions: (1) sufficient number of low-dose projections (based on Nyquist sampling), and (2) insufficient number of high-
dose projections. In both cases, angular sampling is isotropic, and the photon budget is fixed based on the maximum allowable radiation dose. Evaluation with both simulated and
experimental datasets shows that TomoGAN can reduce noise in reconstructed images significantly. Furthermore, the quality of the reconstructed images with filtered back projection
followed by TomoGAN exceeds that of reconstructions with the simultaneous iterative reconstruction technique, showing the computational superiority of our approach.

Computed
tomography

Experiment

Denoised
imageGenerator

Discriminator Wasserstein
Distance

G Loss

D Loss

Content
Distance

back propagation and updating weights

back propagation and updating weights

Low dose
projections

Normal dose
projections

Tomographic
Reconstruction

Tomographic
Reconstruction

Pre-trained
VGG

Pixel L2 Loss

IiND
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Adversarial
Loss

Iteration

LMSE
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LV GG
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

I
[i�b d

2 c,i+b d
2 c]

LD
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

128 128

128

64 64

32 32

6464256

128 32 32 m

32 3264 16 1

Copy

Copy

Copy

8
Adjacent d

noisy images
Enhanced

image
Down sampling Up sampling

1024 x 1024
1024 x 1024

10
24

2

10
24

2

51
22

51
22

51
22

51
22

51
22

51
22

25
62

25
62

25
62

25
62

25
62

25
62

12
82

128

12
82

10
24

2

10
24

2

10
24

2

10
24

2

10
24

2

10
24

2

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
1x1

relu
C

1x1

tanh

2x Bilinear upsampling

2x2 Max pooling

3x3 Conv. + ReLU + BatchNorm

1x1 Convolution + ReLU

1x1 Convolution + tanh

Legend

C
3x3

relu
C

1x1

C
1x1

tanh

d

10
24

2

C
1x1

relu

Image produced by conventional reconstruction. Image following enhancement by TomoGAN.

Figure 2. Two different reconstructions of a noisy experimental dataset, constructed by subsampling 64 projections from a
1,024-projection shale sample dataset. On the left, the results of conventional reconstruction, which are highly noisy. On the
right, those same results after denoising with TomoGAN; the features are much more visible.

facilities by using the same technique but different imaging conditions (different x-ray sources and detectors). We simulate two
scenarios: (1) picking a subset of the x-ray projections, to simulate reduced number of projections as in the case of a lab-based
CT system, and (2) applying synthetic noise to the x-ray projections, to simulate short exposure times. Both scenarios lead to
noisy reconstructed images. We use one dataset to train TomoGAN and then evaluate the trained model on others. We compare
the denoised (DN) images with ground truth and measure the quality of denoised images using (1) the structural similarity
(SSIM)26–28 index and (2) image pixel value plots. Our evaluation results show that our approach can significantly improve
image quality by reducing the noise in reconstructed images. We believe that this approach will also be effective for improving
reconstruction quality when the same sample structure is imaged with different techniques with different imaging contrasts, for
example, in multimodal imaging systems.

Methods
We describe in turn the TomoGAN model architecture, the process by which we train a TomoGAN model, and the datasets and
experimental setup used for evaluation.

Model architecture
Generally, the task of denoising a reconstructed image can be posed as that of translating the noisy image into a corresponding
output image that represents exactly the same features, with the features in the enhanced image indistinguishable from those in
a ground truth version. Machine learning models learn to minimize a loss function—an objective that scores the quality of
results—and although the learning process is automatic, the model still must be told what needs to be minimized. If the model
is (naively) asked to minimize the Euclidean distance between predicted and ground truth pixels, it will tend to produce blurry
results29 since the Euclidean distance is minimized by averaging all plausible outputs. With GANs23, we can instead specify a
high-level goal such as “make the output indistinguishable from reality.” Thus, blurry images are not acceptable because they
are obviously distinguishable from the real image.

Technically, a GAN is a class of deep generative models that aims to learn a target distribution in an unsupervised fashion30.
A GAN combines two neural networks, a generator (G) and a discriminator (D), which compete in a zero-sum game: G
generates candidates that D evaluates; those evaluations serve as feedback to G. Thus, GANs are designed to reach a Nash
equilibrium at which neither of the two networks can reduce its costs without changing the other player’s parameters. In
this paper, we train a DNN to create a generator model G to map a noisy reconstruction (i.e., conditionally use the noisy
reconstruction as input to the G instead of a random value, as in a standard GAN23) into a form that can fool an adversarial
model D that is trained to distinguish reconstructions of noisy projections from the enhanced noisy reconstructions created by
G. Thus, we use G to enhance images; D simply works as a helper to train G. A classic GAN generates samples from random

3/17

DL techniques use multilayer (“deep”) neural networks (DNNs) to learn representations of data with multiple levels of
abstraction. These techniques can discover intricate structure in a dataset by using a back-propagation algorithm to set the
internal parameters that are used to transform data as they flow between network layers. Recent advances in DL, such as
convolutional networks15, rectifier linear units (ReLUs)16, batch normalization17, dropout18, and residual learning19, have
enabled exciting new applications in many areas. DL techniques have been applied successfully to a range of scientific imaging
problems, such as denoising, super-resolution, and image enhancement and restoration20–22.

Image produced by conventional reconstruction. Image following enhancement by TomoGAN.

Figure 1. Two different reconstructions of a noisy simulated dataset, constructed by subsampling 64 projections from a
1,024-projection simulated dataset containing foam features in a 3D volume. On the left, the results of conventional
reconstruction, which are highly noisy. On the right, those same results after denoising with TomoGAN; the features are much
more visible. In these images and others that follow, an inset shows details of a representative feature.

In this article we explore an alternative DL approach to image enhancement, namely, the use of generative adversarial
networks (GANs). GAN approaches are unsupervised (or weakly supervised) and can learn from limited training data, which
makes them especially suitable for experimental data collected at synchrotron light sources. In general, a GAN involves two
neural networks, a generator G and a discriminator D, that contest with each other in a zero-sum-game framework23. Training a
GAN model involves a minimax game between the G that mimics the true distribution and the D that distinguishes samples
produced by the G from the real samples. This approach not only is more resistant to overfitting but also allows for quality
enhancement with much less data than required for conventional supervised DL. GANs have been applied successfully in
medical imaging24, 25 but have not previously been used with high-resolution imaging techniques at synchrotrons. The challenge
in the synchrotron context is that the high-resolution images produced include finely detailed features with high-frequency
content. Approaches developed for medical images are typically insufficient since they are tailored to easily recognizable
features with low-frequency content and, when applied to high-resolution images, can introduce undesired artifacts such as
nonexistent features.

Our GAN-based method, TomoGAN, adapts the U-Net network architecture24 to meet the specialized requirements of
improving the quality of images generated by high-resolution tomography experiments at synchrotron light sources. We
demonstrate that the TomoGAN model can be trained with limited data, performs well with high-resolution datasets, and
generates greatly improved reconstructions of low-dose and noisy data, as shown in Figure 1 and Figure 2. We also show
that our model can be applied to a variety of experimental datasets from different instruments, showing that it is resilient to
overfitting and has wider applicability in practice.

We extensively evaluate our approach with real-world tomography datasets in order to prove the applicability of the
proposed method in practice. These experimental datasets are from different types of shale samples collected at different

2/17

X-ray dose affects reconstruction quality. However, low x-ray dose are used in practice for
sensitive samples or samples with dynamic phenomena.

18 views 72 views 180 views

The proposed TomoGAN has also been applied for the joint ptycho-tomography problem for reconstructing the complex refractive index of a 3D object. Specifically, there is a
ptychography process to reconstruct projections needed for tomography. However, ptychography experiment is very time consuming (~month) and less datapoints results in
noisier ptychography reconstruction and worse tomography images. TomoGAN was used to enhance tomography images with less data points needed, i.e., faster experiment.

SIRT + total variation (conventional SOTA, 550ms) Filtered Back Projection (42ms) + TomoGAN (4ms)

1. The problem

2. The proposed solution

3. Experiment results

Full text: arXiv:1902.07582
Contact: zl@anl.gov

Hard X-ray Tomography setup

TomoGAN Architecture TomoGAN Generator Architecture

Left: Conventional reconstruction, which are highly noisy. Right, those same
results after denoising with TomoGAN; the features are much more visible.

Left: Conventional reconstruction, which are highly noisy. Right, those same results after
denoising with TomoGAN; the features are much more visible.

Conventional vs. TomoGAN-enhanced reconstructions of simulated
data (left) and shale sample (right), subsampled to (512, 256, 128, 64)
projections. In each group of three elements, the two images show
conventional and TomoGAN reconstructions, while the plot shows
conventional, TomoGAN, and ground truth values for the 200 pixels
on the horizontal line in the top left image.

Conventional method versus TomoGAN enhanced
reconstructions of simulated data with intensity of
10,000, 1,000, 500, 100 photons per pixel (i.e.,
different exposure time).

FBP takes 42 ms to reconstruct one image
(using TomoPy) and TomoGAN takes 4 ms to
enhance the reconstruction, totals 46 ms per
image. In contrast, the SIRT based solution
(using TomoPy) takes 550 ms (400 iterations),
i.e., 12x faster. Times are measured using one
Tesla V100 graphic card. Moreover, iterative
reconstruction does not provide better image
quality than does our method.

Hybrid Surrogate
of SIRT with

computational
superiority

FBP takes 42 ms to reconstruct one image (using TomoPy)
and TomoGAN takes 4 ms to enhance the reconstruction,
totals 46 ms per image. In contrast, the SIRT based solution
(using TomoPy) takes 550 ms (400 iterations), i.e., 12x
faster. Times are measured using one Tesla V100 graphic
card. Moreover, iterative reconstruction does not provide
better image quality than does our method.

Liu et al. arXiv: 1902.07582
MMLS’19

TomoGAN - Continue
It has been applied to the joint ptycho-tomography problem for reconstructing the complex refractive
index of a 3D object.

Delta, 0.003

Beta, 0.03

There is a ptychography process to reconstruct
projections needed for tomography. but it is very time
consuming to image the sample (month).

Less datapoint results in noisier ptychography
reconstruction and worse tomography images.

TomoGAN here was used to enhance tomography
images with less data points need to collect, i.e.,
faster experiment.

Liu et al. arXiv: 1902.07582
MMLS’19

Mathematical
programming

Evaluate by simulator

Framework input Framework output

Analyze simple
design choices /
optimize demand

Top k solutions
(design variables)

The framework

Parameters (e.g.
arrival time, data size,
resource demand, network
topology.)

Revised parameters Constraints
(e.g. utilization, budget.)

Objective
(e.g. response time)

De
si

gn
 c

ho
ic

e
M

et
ric

s
N

od
es

 a
t e

ac
h

si
te

N
et

w
or

k
Re

sp
on

se

tim
e

U
til

iza
tio

n
B

57
1

80
8

91
9

20
 G

bp
s

4
m

in
70

 %

A
C

13
42

90
0

79
7

10
 G

bp
s

1
m

in
50

 %

If not satisfied, Iterate utilization constraint / network bandwidth

Cyberinfrastructure (for Lightsource facilities)

A mathematical programming- and simulation-based framework to evaluate
cyberinfrastructure design choices

SLAC

NERSC
LBL

PNWG

DENV

ELPA

HOUS

KANS

NASH

ATLA

ORNL

ANL

CHIC

AOFA
NEWY

BNL

BOST

SUNN

SACR

WASH

SSRL

LCLS

ALCF

APS

OLCF

NSLS

ALS
STAR

Supercomputer center
Hub

Lightsource facility

ALBQ

A use case for DOE light source facilities
and leadership computing facilities.eScience 2017

AI-Science 2018

Target System

Inference of
Trained ML model

Train Machine
Learning model

Policing Module
(filter abnormal actions)

Realtime

History
Batch

Confidence
Action

State data Control / Config

Deploy

EnvironmentState data

Reject, 0 reward

Expose to Env.

Assigned Goal

Facility M
(e.g., archival facility)

En
er

gy
 K

E

Pe
rfo

rm
an

ce
 K

E

…Facility E
(e.g., network

facility)

Facility A
(e.g., computing

facility)
KE

KE

Fa
ilu

re
 K

E

En
er

gy
 K

E

U
til

iza
tio

n
KE

En
er

gy
 K

E

Re
lia

bi
lit

y
KE

U
til

iza
tio

n
KE

Ro
ut

in
g

KE

U
til

iza
tio

n
KE

Ro
ut

in
g

KE

En
er

gy
 K

E

Pe
rfo

rm
an

ce
 K

E

En
er

gy
 K

E

U
til

iza
tio

n
KE

Ro
ut

in
g

KE

Fa
ilu

re
 K

E

Pe
rfo

rm
an

ce
 K

E

Facility B
(e.g., experimental

facility)
KE

Science Funding Agencies
(e.g., National Science Foundation, Department of Energy etc)

KE

KEKE

…Cluster
/HPC KE Storage KEDTN KELAN KEWAN KELAN KEInstrum

ent KEDTN

General Architecture of an autonomous system,

the shaded area is the Knowledge Engine.

Architecture of autonomous science infrastructure.

Each node is equipped with a knowledge engine

AutoMasking for Rapid Data Acquisition and Reduction (ongoing)

Incident X-ray beam
50-500µm

Calibration Integration Top-View Plot

It needs to exclude certain areas on the
2D image from the integration process.

AutoMasking for XRD

Now, it is masked manually by experienced beamline scientists.

Each experiment generates 100x - 1000x images.

The tool automatically save experts’ manual masks to harvest training dataset, we then train models to
learn from expert.

Needs to remove Needs to keep Tiny but needs to remove

Not deterministic. It can grow, move and diminish across a data series.

Selected publications

1)Z. Liu, T. Bicer, R. Kettimuthu, D. Gursoy, F. Carlo and I. Foster. TomoGAN: Low-Dose X-Ray Tomography with Generative
Adversarial Networks. [arXiv:1902.07582].

2)Y. Liu, Z. Liu, R. Kettimuthu, N. Rao, Z. Chen and I. Foster. Data transfer between scientific facilities - bottleneck analysis,
insights and optimizations. CCGrid'19.

3)Z. Liu, R. Kettimuthu, P. Balaprakash, N. Rao and I. Foster. Building a Wide-Area Data Transfer Performance Predictor: An
Empirical Study. MLN’18.

4)R. Kettimuthu, Z. Liu, I. Foster, P. Beckman, A. Sim, J. Wu, W. Liao, Q. Kang, A. Agrawal, and A. Choudhary. Toward
Autonomic Science Infrastructure: Architecture, Limitations, and Open Issues. AI-Science@HPDC’18.

5)Z. Liu, R. Kettimuthu, I. Foster and Y. Liu. A comprehensive study of wide area data movement at a scientific computing
facility. SNTA@ICDCS’18.

6)Z. Liu, R. Kettimuthu, I. Foster and N. Rao. Cross-geography Scientific Data Transfer Trends and User Behavior Patterns.
HPDC’18.

7)Z. Liu, R. Kettimuthu, I. Foster, P. Beckman. Towards a Smart Data Transfer Node. FGCS, 2018(89).

8)R. Kettimuthu, Z. Liu, D. Wheeler, I. Foster, K. Heitmann, F. Cappello. Transferring a Petabyte in a Day. FGCS, 2018(88).

9)Z. Liu, R. Kettimuthu, S. Leyffer, P. Palkar and I. Foster. A mathematical programming and simulation based framework to

evaluate cyberinfrastructure design choices. IEEE eScience’17.

10)Z. Liu, P. Balaprakash, R. Kettimuthu and I. Foster. Explaining Wide Area Data Transfer Performance. HPDC’17.

Intelligent Infrastructure for Science

(e.g., Machine Learning for System, ML4Science, AI4Science)

Interests and Plans

Thanks!

we may save ~10% energy and will lose only 0.1% in performance

Smart [for] Energy

