
Data transfer between scientific facilities –
bottleneck analysis, insights, and optimizations

Yuanlai Liu§, Zhengchun Liu∗, Rajkumar Kettimuthu∗, Nageswara S.V. Rao¶, Zizhong Chen§ and Ian Foster∗†
∗ Data Science and Learning Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, IL 60439, USA

{zhengchun.liu, kettimut, foster}@anl.gov, raons@ornl.gov, chen@cs.ucr.edu, yliu158@ucr.edu
† Department of Computer Science, University of Chicago, Chicago, IL 60637, USA
§ University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
¶ Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37830, USA

Abstract—Wide area file transfers play an important role in
many science applications. File transfer tools typically deliver the
highest performance for datasets with a small number of large
files, but many science datasets consist of many small files. Thus
it is important to understand the factors that contribute to the
decrease in wide area data transfer performance for datasets with
many small files. To this end, we (i) benchmark the performance
of subsystems involved in end-to-end file transfer between two
HPC facilities for a many-file dataset that is representative of
production science transfers; (ii) characterize the per-file over-
head introduced by different subsystems; (iii) identify potential
dependencies and bottlenecks; (iv) study the effectiveness of
transferring many files concurrently as a means of reducing per-
file overheads; and (v) prototype a prefetching mechanism as
an alternative of concurrency to reduce the per-file overhead
on source storage system. We show that both concurrency and
prefetching can help reduce the per-file overhead significantly. A
reasonable level of concurrency combined with prefetching can
bring the per-file overhead down to a negligible level.

I. INTRODUCTION

Massive amounts of data are generated by scientific fa-
cilities worldwide. Often, these data need to be moved to
other facilities in different geographic locations for analysis,
archiving, distribution, and other purposes. For example, a
single trillion-particle simulation with the Hardware/Hybrid
Accelerated Cosmology Code (HACC) [1] generates 20 PB of
raw data (500 snapshots, each 40 TB). These data are typically
moved to other sites for analysis [2]. Research and education
networks in different countries provide high-speed network
connectivity between such facilities. For example, the U.S.
Department of Energy’s Energy Sciences Network (ESnet)
provides connectivity to many science facilities at 100 Gbps
or more. It carries around 20 petabytes monthly, primarily file
transfers [3]. Science facilities employ dedicated data transfer
nodes (DTNs) [4] for wide area file transfers.

GridFTP, an extension of the standard FTP protocol, is
widely used for large science transfers, in particular via
Globus [5], a cloud-hosted software-as-a-service that orches-
trates file transfers between pairs of storage systems, mounted
typically on dedicated data transfer nodes running GridFTP
servers. (Other tools used for file transfers include FTP,
rsync, SCP, BBCP [6], FDT [7], XDD, and Aspera.) GridFTP
provides high performance, improved security relative to FTP,
and improved reliability. Depending on the number and sizes

of files in a user transfer request, Globus uses a heuristic to
determine the number of GridFTP server processes (potentially
on different DTNs, if a site has more than one DTN) to
use. This number is often referred to as concurrency. Pipeline
depth, another optimization parameter, specifies the number
of files to be queued in each GridFTP server process in
advance [2]. These concurrency and pipeline depth parameters
influence the number of files (in a transfer request) assigned
to each server process. Each GridFTP server process uses
multiple TCP connections to transfer each file, caching these
TCP connections and reusing them for all file transfer requests
in a single client session.

In previous work [3], we characterized approximately 40
billion files totaling 3.3 exabytes transferred with GridFTP
and 4.8 million file collections transferred by using the Globus
transfer service, both during the period 2014-01-01 to 2018-
01-01. Figure 1 shows the cumulative distribution of total bytes

0.5 1 2 3 4 5 6 7 8 9 10
Number of files in a transfer (£1000)

0

10

20

30

40

50

60

Cu
m

ul
at

iv
e 

%
 o

f t
ot

al
 b

yt
es

Fig. 1: Cumulative distribution of total bytes transferred using
Globus by the number of files in a transfer, from the year 2014
to 2017.

transferred by Globus during this period as a function of the
number of files in a transfer. We see that 90% of all bytes
transferred are from transfer requests with more than one file
(the starting point of the number of files in a transfer is one in
Figure 1), 63% are from transfers with more than 1,000 files,
and 42% are from transfers with 10,000 or more files. Thus, it
is important to get insights into the performance bottlenecks
for multifile transfers: the focus of the work reported here.



The rest of the paper is as follows. §II provides the back-
ground and motivation for the work. In §III we analyze bot-
tlenecks for multifile transfers between two high-performance
computing (HPC) facilities. Then in §IV, we use regression
to measure indirectly the per-file overhead of each major
subsystem involved in these transfers. In §V we study the
effectiveness of concurrent transfers in suppressing per-file
overheads. As an alternative to using high concurrency to
hide per-file overhead, §VI presents a prototype prefetching
mechanism. In §VII we review related work, and in §VIII we
summarize our conclusions.

II. BACKGROUND

The ability to move large volumes of data rapidly between
supercomputer facilities is critical for a (growing) number
of science projects [2], [8]. The Petascale DTN collabo-
ration, comprising staff at ESnet and four supercomputing
facilities, namely, the National Energy Research Scientific
Computing Center (NERSC), Argonne Leadership Computing
Facility (ALCF), Oak Ridge Leadership Computing Facility
(OLCF), and National Center for Supercomputing Applica-
tions (NCSA), was formed in 2016 to enhance data transfer
rates among these facilities. Its goal was to achieve routine
wide area file transfer rates of 15 Gbps, so as to enable the
movement of one petabyte between any two of these major
facilities in one week.

TABLE I: Data transfer rates (Gbps) among four major su-
percomputing facilities as various optimizations were applied
over time. Data source: [9].

(a) March 2016
`````````Destination

Source ALCF NCSA NERSC OLCF

ALCF – 8.2 7.3 11.1
NCSA 13.4 – 7.6 13.3

NERSC 10.0 6.8 – 6.7
OLCF 10.5 6.9 6.0 –

(b) June 2017
`````````Destination

Source ALCF NCSA NERSC OLCF

ALCF – 21.2 27.2 23.0
NCSA 19.4 – 20.2 15.1

NERSC 22.9 11.8 – 19.7
OLCF 25.7 15.2 20.6 –

(c) November 2017
`````````Destination

Source ALCF NCSA NERSC OLCF

ALCF – 56.7 42.2 47.5
NCSA 50.0 – 33.7 43.4

NERSC 35.0 22.6 – 33.1
OLCF 46.8 34.7 39.0 –

Petascale DTN project team members used the Globus
transfer service to move a cosmology data set (referred to
as L380) repeatedly between the four facilities. This dataset
comprises about 4.4 terabytes of small- and medium-sized
files; transfers use the automatic performance tuning heuristics

in the Globus transfer service to set concurrency and pipeline
depth parameters.

Table Ia shows file transfer rates observed when the project
started in 2016. We see that none of the throughput meet
the project goal of 15 Gbps throughput: a few links were
within 10-15% of the goal, but others were significantly lower.
To achieve the goal, collaboration members made a number
of improvements to the data transfer infrastructure, such as
updating DTN software, changing DTN configurations, and
adding new DTNs. Table Ib shows the file transfer rates among
various pairs of the four facilities 15 months after the Petascale
DTN project started. All but one of the links among the four
facilities achieved sustained file transfer rates above the target
rate of one petabyte per week.

Since autumn 2017, Globus teams have worked on an opti-
mization to the transfer service that improves load balancing
and reduces the problem of long tails, that is, the situation
where some of the concurrent GridFTP server processes in-
volved in a transfer take much longer to process the files allo-
cated to them than do others [10]. This optimization sorts the
files to be transferred in descending order of their size before
assigning them to the GridFTP server processes. In addition,
for the last 10×C files (where C is the concurrency: i.e., the
number of GridFTP server processes), this optimization forces
a pipeline depth of 1. The overall effect of these changes is
to reduce the long tail effect, and as shown in Table Ic, to
improve transfer rates by factors ranging from 1.5 to 3.5.

III. BOTTLENECK ANALYSIS

The performance improvements reported in the preceding
section are impressive, but we aspire to do even better. To
that end, we seek to understand the bottleneck(s) in the end-
to-end transfers. Here, we first describe the testbed, dataset,
and process that we used to perform the bottleneck analysis,
and we then present our analysis results and inferences.

A. Testbed

For the bottleneck analysis, we picked two of the four
sites involved in the Petascale DTN project, namely, ALCF
and NERSC, because we already had access to their DTNs.
The ALCF has a 7 PB GPFS and NERSC a 28 PB Lustre
filesystem. There are multiple 100 Gbps wide area connec-
tions between the ALCF and ESNet and multiple 100 Gbps
connections between NERSC and ESNet, but the end-to-end
bandwidth between the ALCF and NERSC is 100 Gbps. The
round-trip time between the ALCF and NERSC is about 45
ms. The ALCF has 12 DTNs, each with one Intel Xeon E5-
2667 v4 @3.20 GHz CPU, 64 GB of RAM, and one 10 Gbps
NIC. NERSC has 10 DTNs, each of which has two Intel Xeon
E5-2680 v2 @2.80 GHz CPU, 128 GB of RAM ,and 2 × 10
Gbps NIC.

B. Experiments

We performed a range of experiments to measure the
performance of both end-to-end file transfers and the major
subsystems involved in transfers, namely, the source storage



system, the destination storage system, and the network in
between:

1) Read-bench measures storage read throughput by read-
ing data from the parallel file system (PFS) to memory.

2) Write-bench measures storage write throughput by writ-
ing data from memory to PFS.

3) Read-bench-G measures storage read throughput by
using GridFTP to transfer files from PFS to /dev/null
locally (source and destination are the same).

4) Write-bench-G measures storage write throughput by
using GridFTP to perform local (i.e., same source and
destination) transfers from /dev/zero to PFS.

5) Net-bench-G performs memory-to-memory GridFTP
transfers to measure wide area network (WAN) perfor-
mance. This experiment involves multiple equal-sized
transfers from /dev/zero at the source to /dev/null at the
destination, performed concurrently with GridFTP.

6) F2F measures file-to-file GridFTP transfers over the
WAN. All subsystems are involved in this experiment.

7) F2M measures file-to-memory GridFTP transfer over
the WAN. Destination storage is not involved in this
experiment.

We performed the GridFTP tests in this list with the
globus-url-copy [11] command line client. This tool
lacks many of the features of the Globus transfer service
(hosted GridFTP client) and is less user-friendly but is more
convenient for experimental purposes. globus-url-copy
and the Globus transfer service are interchangeable in most of
our experiments.

C. Dataset
A typical user transfer consists of one or more files and zero

or more folders. Before we undertake the bottleneck analysis,
we want to verify that the dataset used for the analysis is
representative of science wide area file transfers, in order that
our findings and proposed optimization methods can benefit
other such transfers.

20 25 210 215 220 225 230

File size (byte)
0

2

4

6

8

10

Fr
eq

ue
nc

y 
(%

)

Real
L380

Fig. 2: Distribution of file sizes in the dataset used by
the Petascale DTN project vs. a larger representative set of
GridFTP transfers

Figure 2 compares the file size distributions of (a) the
L380 dataset used in the Petascale DTN project (Table I)

and (b) all transfers from 2014 to 2017 among more than
64,000 Globus GridFTP servers worldwide [3]. We see that
the L380 file size distribution is not representative of typical
GridFTP transfers. Thus, for the experiments reported here
we generate a synthetic dataset with a file size distribution
similar to that of all production GridFTP transfers. We refer
to this dataset, which comprises 59,589 files totaling 1 TB, as
DSreal throughout the paper. We note that given the hardware
specification of our testbed, we need a large dataset so that
the transfer time will be long enough for representativeness.
For other scenarios, the dataset size can be varied by simply
adjusting the number of files sampled in the distribution.

20 25 210 215 220 225 230

File size (byte)
0

2

4

6

8

10

Fr
eq

ue
nc

y 
(%

)

Real
Generated

Fig. 3: Distribution of dataset file size, generated versus real.

Considering the representativeness of the file size distribu-
tion, we believe that this distribution, which was extracted
from massive production GridFTP transfer logs, will be useful
for benchmarking the performance of file transfer tools and for
estimating the real benefits of file transfer optimizations. The
distribution and code to generate files that follow the distribu-
tion are openly available at https://github.com/ramsesproject/
transfer-file-dist.

D. Influence of dataset characteristics on performance

Figure 4 compares the performance of L380 and DSreal.
One can see that the performance of DSreal is significantly
lower than that of L380, which indicates that dataset charac-
teristics can have a significant impact on the performance. In
order to further establish the relationship between the dataset
characteristics and the performance, we created a dataset of
the same size as DSreal but having just enough files (i.e., the
same as the concurrency used) to utilize all the concurrent
processes used for data transfer using Globus. We refer to this
dataset as DSbig. We kept the size of all files in DSbig the
same to avoid any tail effects.

We transferred DSreal and DSbig one after the other using
the Globus transfer service and repeated the process10 times
to reduce the influence of randomness and gather statistically
significant results. We used the default endpoint configura-
tion of the ALCF and NERSC DTNs in Globus (i.e., 64
concurrent transfers and 4 TCP streams for each transfer).
Figure 4 compares their performance. We see that the file size

https://github.com/ramsesproject/transfer-file-dist
https://github.com/ramsesproject/transfer-file-dist


characteristics and number of files have significant influence
on transfer performance.

DSbig L380 DSreal
3

4

5

6

7

8

9

Th
ro

ug
hp

ut
 (G

B/
s)

Fig. 4: Comparison of transfer performance for the DSbig,
L380, and DSreal datasets between the ALCF and NERSC.
Each transfer was repeated 10 times.

We note that the WAN is not dedicated for our experiments;
that is, other programs consumed some of the wide area
bandwidth between the ALCF and NERSC. Even though we
repeated our experiments several times, we used the Simple
Network Management Protocol (SNMP) data provided by ES-
Net to make sure that DSreal was not so unlucky to always have
external load (and DSbig was not so lucky to never have any
external load) during the tests. ESNet provides the throughput
of its routers’ interface [12] every 30 seconds. Figure 5
shows the network routers’ interface on the traceroute
(a program that tracks the network path of data between two
points) between the ALCF and NERSC.

NERSC

switch sacr-cr5 
(134.55.40.5)

denv-cr5 
(134.55.50.202)

kans-cr5 
(134.55.49.58)

chic-cr5 
(134.55.43.81)

star-cr5 
(134.55.42.46)
(134.55.42.42)

to_nersc_ip-e to_sacr-cr5_ip-a

to_kans-cr5_ip-ato_chic-cr5_ip-b

to_anl_hpc_ip-a_v4v6

sdn240rtr
(140.221.47.7)

if2 if1

egress
(192.5.170.6)

if543 if542

ALCF

CR1
CR2

border
cr2-mgmt74

cr1-mgmt74

to_denv-cr5_ip-a

cr2-mgmt90

cr1-mgmt90

Fig. 5: Routing path between the ALCF and NERSC.

Figure 6 shows the throughput of all router interfaces
between the ALCF and NERSC during our transfer of DSbig

and DSreal, respectively.
All interfaces have a 100 Gbps capability. Clearly the

network is not saturated during the transfer, thus indicating
that the lower performance of DSreal is not due to external
network load.

We conducted a subset of experiments described in §III-B to
identify the bottleneck. Figure 7 shows the benchmark results
for both DSbig and DSreal. The same block size is used for
Read-bench, Read-bench-G, Write-bench, and Write-bench-G.
iPerf3 is commonly used for benchmarking network

performance, but it cannot emulate multifile transfers and in
particular does not reuse TCP connections across files, as

22:01:30 22:02:00 22:02:30 22:03:00 22:03:30 22:04:00 22:04:30 22:05:00 22:05:30
Datetime (UTC)

0

20

40

60

80

Gb
ps

sacr-cr5:to_nersc_ip-e(in)
denv-cr5:to_sacr-cr5_ip-a(in)

kans-cr5:to_denv-cr5_ip-a(in)
chic-cr5:to_kans-cr5_ip-a(in)

star-cr5:to_chic-cr5_ip-b(in)
star-cr5:to_anl_hpc_ip-a_v4v6(out)

(a) Big file-size dataset (DSbig).

22:05:00 22:06:00 22:07:00 22:08:00 22:09:00 22:10:00 22:11:00 22:12:00
Datetime (UTC)

0

20

40

60

80

Gb
ps

sacr-cr5:to_nersc_ip-e(in)
denv-cr5:to_sacr-cr5_ip-a(in)

kans-cr5:to_denv-cr5_ip-a(in)
chic-cr5:to_kans-cr5_ip-a(in)

star-cr5:to_chic-cr5_ip-b(in)
star-cr5:to_anl_hpc_ip-a_v4v6(out)

(b) Real file-size dataset (DSreal).

Fig. 6: Router interface throughput when transfer DSbig and
DSreal separately using Globus.

GridFTP does. So, first we compared the performance of
iPerf3 with that of /dev/zero to /dev/null GridFTP transfers
from source to destination for a fixed duration. Both tests
obtained similar performance. Figure 8 and Figure 9 show the
throughput of all corresponding router interfaces in the WAN
for both tests. Clearly, the transfer tool can have capability
similar to that of iPerf3 to saturate the network. Thus,
we benchmarked the performance of the WAN between the
NERSC and the ALCF using GridFTP by transferring the same
amount of bytes and files as DSbig and DSreal from /dev/zero
at the source to /dev/null at the destination (to avoid the impact
of storage system overhead on network performance).

From Figure 7, we can see that the bottleneck is in fact
the network and not the source or destination storage for both
the DSbig and DSreal datasets. Even though the network is
the ultimate bottleneck for DSreal dataset, Figure 7 shows
a noticeable drop in performance for DSreal compared with
DSbig for each case benchmarked. This establishes that there
is a per-file overhead in storage read, storage write, and the
network. In the following section, we use regression to provide
an in-depth analysis of the per-file overhead introduced by
each of these components.

IV. FURTHER INSIGHTS

Clearly, the per-file overheads cause the observed perfor-
mance degradation. Direct measurement of these overhead
requires instrumenting the transfer tool, which would make
this work specific to the tool. Also, deploying a new (instru-
mented) version of a tool in the production environment used
for our testing is challenging. Thus, we performed experiments
using one concurrency to measure the overall per-file overhead
indirectly. To identify directions for optimization, we also
broke down the per-file overhead for each subsystem as
follows:

• Storage read overhead is introduced by (previous) file
close and (next) file open at the source (OR);



Read- 
 bench

Read-
bench-G

Write-
bench

Write-
bench-G

Net-
bench-G

Experiments

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (G

B/
s)

(a) Testing using DSbig

Read- 
 bench

Read-
bench-G

Write-
bench

Write-
bench-G

Net-
bench-G

Experiments

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (G

B/
s)

(b) Testing using DSreal.

Fig. 7: Storage and network benchmark for file transfer.
The network is benchmarked by transferring N equally sized
dev/zero at NERSC to /dev/null at the ALCF, where N is the
number of files of DSbig and DSreal, respectively.

20:41:00 20:46:00
Datetime (UTC)

0

20

40

60

80

Gb
ps

sacr-cr5:to_nersc_ip-e(in)
denv-cr5:to_sacr-cr5_ip-a(in)

kans-cr5:to_denv-cr5_ip-a(in)
chic-cr5:to_kans-cr5_ip-a(in)

star-cr5:to_chic-cr5_ip-b(in)
star-cr5:to_anl_hpc_ip-a_v4v6(out)

Fig. 8: Router interface throughput during the memory-to-
memory transfer using Globus.

• Storage write overhead is introduced by (previous) file
close and (next) file open at the destination (OW);

• Network overhead is caused by TCP dynamics due to
discontinuity in data flow caused by OR and/or OW (ON);

If there were an infinite amount of buffer in each subsystem,
the overall per-file overhead would be the maximum of OR,
ON and OW. With no buffers at all, it would be the sum of OR,
ON and OW. With limited buffers, the overall per-file overhead

05:16:00 05:17:00 05:18:00 05:19:00 05:20:00 05:21:00 05:22:00 05:23:00 05:24:00 05:25:00 05:26:00
Datetime (UTC)

0

20

40

60

80

100

Gb
ps

sacr-cr5:to_nersc_ip-e(in)
denv-cr5:to_sacr-cr5_ip-a(in)

kans-cr5:to_denv-cr5_ip-a(in)
chic-cr5:to_kans-cr5_ip-a(in)

star-cr5:to_chic-cr5_ip-b(in)
star-cr5:to_anl_hpc_ip-a_v4v6(out)

Fig. 9: Router interface throughput during the iPerf3 test.

will be between max(OR, ON, OW) and OR + ON + OW.
Assuming that each file introduces a fixed overhead of t0,

the network throughput is R. Thus, the time T to transfer N
files totaling B bytes with one concurrency will be

T = N ∗ t0 +
B

R
. (1)

Note that this model holds true only if each file introduces
overhead that is independent of file size. To verify this model
and measure the overhead of a file indirectly, we performed
a series of experiments. We kept the total dataset size the
same (5 GB, chosen to keep the experiment time short to
reduce the influence of external load) for all experiments
but varied the number of files in each experiment. We then
transferred these datasets from NERSC to the ALCF using
globus-url-copy. Figure 10 shows the results. A clear
linear relation exists between the transfer time and the number
of files. The Pearson correlation coefficient [13] between T and
N is 0.995, indicating that they have a strong linear correlation.
Thus, the experiment results verified that the model shown in
Equation 1 holds true. We therefore can use regression analysis
to fit parameters t0 and B

R as a combination. The coefficients
are as follows:

T = 0.0665N + 16.5, (2)

implying that the per-file overhead is 66.5 ms and that this
overhead is the cause for the performance drop (seen in Fig-
ure 4) for the dataset with many files.

0 1000 2000 3000 4000 5000
Number of files

0

50

100

150

200

250

300

350

400

Tr
an

sf
er

 ti
m

e(
s)

 T=0:0665N+16:5

Experiment
Linear fit

Fig. 10: Transfer time as a function of the number of files for
transfer of files between NERSC and the ALCF. Transfer size
is 5 GB.

To measure OR, ON, and OW, we performed transfer ex-
periments from files to /dev/null at NERSC, from /dev/zero on
NERSC to /dev/null on the ALCF and from /dev/zero to files at
the ALCF. All these experiments used a total dataset of 5 GB
with varying numbers of files (the same as that of experiments
corresponding to Figure 10. Thus, each regression analysis
revealed the per-file overhead of that particular subsystem.
Figure 11 shows the experiment results.

The regression models are T = 0.034N + 18.6, T = 0.0253N
+ 9.6, and T = 0.0101N + 7.0 for storage read, network, and
storage write, respectively. OR, ON, and OW are 34.0 ms, 25.3
ms, and 10.1 ms, respectively.



0 1000 2000 3000 4000 5000
Number of files

0

50

100

150

200
Tr

an
sf

er
 ti

m
e(

s)

 T=0:0340N+18:6

Experiment
Linear fit

(a) Transfer time as a function of number of files for files to /dev/null
transfer locally at NERSC. Transfer size is 5 GB.

0 1000 2000 3000 4000 5000
Number of files

0

20

40

60

80

100

120

140

Tr
an

sf
er

 ti
m

e(
s)

 T=0:0253N+9:6

Experiment
Linear fit

(b) Transfer time as a function of number of files for /dev/zero
to /dev/null transfer over WAN between NERSC and the ALCF.
Transfer size is 5 GB.

0 1000 2000 3000 4000 5000
Number of files

0

10

20

30

40

50

60

Tr
an

sf
er

 ti
m

e(
s)

 T=0:0101N+7:0

Experiment
Linear fit

(c) Transfer time as a function of number of files for /dev/zero to
files transfer locally at the ALCF. Transfer size is 5 GB.

Fig. 11: Per-file overhead analysis using regression.

We note that ON also includes the cost of opening and
closing /dev/zero and /dev/null, operations that were performed
many times because of the large number of files in the dataset.
To evaluate the significance of this cost, we performed the
/dev/zero to /dev/null transfers locally at NERSC. Figure 12
shows the results. We find that the per-file cost introduced by
opening and closing of /dev/zero and /dev/null is only 0.3 ms.
So, ON is still 25 ms.

Thus, as we hypothesized in the beginning of this section,

0 1000 2000 3000 4000 5000
Number of files

14.6

14.8

15.0

15.2

15.4

15.6

15.8

16.0

Tr
an

sf
er

 ti
m

e(
s)

 T=0:0003N+14:6

Experiment
Linear fit

Fig. 12: Transfer time vs. number of files for 5 GB local
transfer from /dev/zero to /dev/null at NERSC.

the per-file overhead for end-to-end file transfer (66.5 ms) lies
between the maximum of the individual subsystems per-file
overhead (34.0 ms) and the sum of per-file overhead of each
individual subsystem (69.1 ms) and is much closer to the latter
in practice.

The per-file overhead is significant and needs to be reduced
in order to achieve high performance for transfers with large
number of files. Prefetching the files can help reduce OR and
thus can indirectly reduce ON, but it requires changes to the
transfer tool. Concurrent transfer of multiple files can help
reduce the average per-file overhead.

V. CONCURRENT TRANSFERS

It is well known that concurrent transfers will help im-
prove the performance of transfers with many files [14],
[15], [2]. Usually, the performance improves with increasing
concurrency only to a certain concurrency value. Increasing
concurrency beyond that value will hurt the transfer perfor-
mance [14], [15].

In §IV, we saw that each subsystem operation (storage read,
network transfer and storage write) has a fixed overhead for
each file transferred. Among them, storage read has the highest
overhead in our experimental environment. The subsystem that
has the highest overhead will vary based on the environment
but we expect each subsystem to have a per-file overhead. In
this section, we study how concurrent transfers of multiple
files can help reduce the average per-file overhead for each
subsystem. Since increasing concurrency will result in negative
returns beyond a certain value (because of contention) and this
value varies based on external factors (such as external load on
network and storage), determining the “just right” concurrency
is hard [15], [16]. Still, we perform transfer experiments with
the representative dataset DSreal from NERSC to ALCF to
understand the impact of concurrent transfers in reducing the
average per-file overhead.

A. Storage read

We used globus-url-copy [11] to transfer DSreal from
the parallel file system at NERSC to /dev/null locally with
varying numbers of concurrent file transfers. Figure 13 shows



the throughput as a function of concurrency. Throughput
increases with the number of concurrency up to 14 GB/s; then,
further increasing concurrency does not help.

2 4 8 10 20 30 40 50 60 70 80 90 100 200 300 400 450 500
Concurrency

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (G

B/
s)

Fig. 13: Read-bench-G: Lustre read performance test using
globus-url-copy.

B. Network

We next varied the concurrency to study the effectiveness of
concurrency in suppressing per-file network overheads. We see
from Figure 14 that per-file overheads can be suppressed with
sufficient concurrency. The amount of concurrency needed to
achieve the maximum throughput is much smaller than that
needed to suppress the per-file read overhead (as shown in
Figure 13).

2 4 8 10 20 30 40 50 60 70 80 90 100 200 300 400 450 500
Concurrency

0
1
2
3
4
5
6
7
8
9

Th
ro

ug
hp

ut
 (G

B/
s)

Fig. 14: Net-bench-G: Transfer 59,589 /dev/zero totaling 1 TB
(the same as DSreal) at NERSC DTNs to /dev/null at the
ALCF DTNs.

Experiments in §V-A (i.e., Figure 13) involve only file read
operations. Here we add the network to experiments in §V-A
by transferring DSreal from NERSC to /dev/null at the ALCF.
Figure 15 shows throughput as a function of concurrency. Here
again throughput increases with concurrency up to point and
then starts decreasing.

C. Storage write

We next transfer data from /dev/zero to the parallel file
system locally at the ALCF. Specifically, we write 59,589
equal-sized files, totaling 1 TB, because of a limitation in the

2 4 8 10 20 30 40 50 60 70 80 90 100 200 300 400 450 500
Concurrency

0

1

2

3

4

5

6

7

8

Th
ro

ug
hp

ut
 (G

B/
s)

Fig. 15: F2M: Transfer files on Lustre at NERSC to /dev/null
at the ALCF DTNs.

transfer tool that did not allow us to transfer varying lengths
of data from /dev/zero in a single transfer. As discussed in
§IV, the per-file overhead is fixed and independent of file size.
Thus, the per-file overhead for this dataset will be the same
as for DSreal. Figure 16 shows the results of this experiment.
Here again we see diminishing returns beyond a certain point,
albeit with a strange pattern.

2 4 8 10 12 24 36 48 60 72 84 96 108 120 240 360 480
Concurrency

0

5

10

15

20

Th
ro

ug
hp

ut
 (G

B/
s)

Fig. 16: Write-bench-G: Transfer from /dev/zero at the ALCF
DTNs to files on GPFS at the ALCF for the GPFS write
performance benchmark.

D. End-to-end file transfers

Here we present the results of transferring DSreal from the
parallel file system at NERSC to the parallel file system at the
ALCF using globus-url-copy with different concurrency
values. Figure 17 shows the performance results.

We can see that the throughputs in Figure 17 are slightly
worse than that of the corresponding throughputs in Figure 15
for the most part (for extremely high concurrency values, it
is not true, but we attribute that to noise). The network is the
bottleneck in both cases, but Figure 17 can have additional
per-file overhead up to OW, which is 10.1 ms.

Overall, these experiments show that datasets with many
files can achieve the maximum performance (as achieved by a
dataset with an optimal number of files) by using a “just right”
concurrency (i.e., about 450 in this case). In other words, by



2 4 8 10 20 30 40 50 60 70 80 90 100 200 300 400 450 500
Concurrency

0
1
2
3
4
5
6
7
8
9

Th
ro

ug
hp

ut
 (G

B/
s)

Fig. 17: F2F: Transfer files on Lustre at NERSC to GPFS at
the ALCF.

adjusting the number of concurrent transfers, the maximum
performance for wide area data transfers can be achieved
irrespective of the dataset characteristics. Identifying the “just
right” concurrency is a challenging task especially because it
varies based on the environmental conditions and also different
subsystems have different optimal concurrency values. For
example, as can be observed from Figure 18, even between
the same pair of endpoints the “just right” concurrency values
vary based on the direction of the transfers.

2 4 8 10 20 30 40 50 60 70 80 90 100 200 300 400 450 500
Concurrency

0
1
2
3
4
5
6
7
8
9

Th
ro

ug
hp

ut
 (G

B/
s)

NERSC-to-ALCF
ALCF-to-NERSC

Fig. 18: Comparison of performance when transfer DSreal

from the ALCF to NERSC and the reverse direction.

VI. PREFETCHING

From the preceding section, it is clear that the per-file
overhead can be reduced by concurrently transferring multiple
files. We also note that the per-file overhead can even be
made negligible (if not completely eliminated), but the amount
of concurrency needed to achieve that is too high (> 400).
For example, Figure 19 shows the total CPU utilization (in
core*seconds) to transfer a given dataset with different con-
currency. Although high levels of concurrency achieve better
performance, they consume more CPU as well and thus can
negatively impact other transfers.

Thus, another approach to reduce the per-file overhead is
prefetching. In this section, we explore a prefetching mecha-
nism to alleviate the impact of OR (and thus ON at least to

5 10 15 20
Concurrency

240
250
260
270
280
290
300
310
320

CP
U 

Us
ag

e 
(c

or
e*

se
co

nd
s)

0.7

0.8

0.9

1.0

1.1

Th
ro

ug
hp

ut
 (G

iB
/s

)

Fig. 19: CPU utilization vs. transfer concurrency.

some extent). We recall that OR is ∼ 34 ms and ON is ∼ 25
ms. GridFTP utilizes pipelining to avoid communication over-
head between the GridFTP server and client after completion
of each file transfer. However, overhead still exists between
two files, which is the sum of (1) time taken to close the file
whose transfer just got completed; (2) time to move the disk
probe to the location of the file that needs to be transferred
next (Nextfile); and (3) time to open Nextfile.

Figure 20 shows the procedure of our prefetching-enabled
algorithm. The idea is to prefetch one or more blocks of the
Nextfile during the transfer of a file so that we can start
transferring the Nextfile immediately upon completion of
the ongoing file transfer, avoiding the overhead mentioned
above. To ensure that the prefetching of Nextfile does

fread(256KB)

write to socket No

TCP buffer full?

Yes 

No 

prefetch buffer full?

Yes

prefetch(256KB) 

Fig. 20: Flow diagram of the prefetching approach

not influence the ongoing file transfer, we do the prefetching
only when the ongoing transfer has filled the TCP send buffer
(and is waiting for space in the buffer to write the next
block). Every time the ongoing transfer fills the TCP buffer,
we read a block of data (256 KB) of Nextfile (or the
following file(s) if we still have space in the prefetch buffer



after fetching Nextfile in its entirety). This prefetch buffer
size is configurable: we used 2 MB.

Figure 21 shows the effectiveness of prefetching using mul-
tiple 80 GB transfers, each with a different number of files. We
note that the transfer time increases much more slowly with
increasing number of files when prefetching is enabled. Thus,
prefetching can help reduce the per-file overhead significantly.

0 1000 2000 3000 4000 5000
Number of files

20
21
22
23
24
25
26
27
28
29

Tr
an

sf
er

 ti
m

e(
m

in
ut

e)

Without prefetching With prefetching

Fig. 21: Transfer time as a function of number of files for 80
GB transfers from NERSC to the ALCF.

Figure 22 shows the throughput for 2 TB dataset (containing
50,000 files) transfers with and without prefetching for differ-
ent concurrency values. Prefetching clearly helps achieve a

50 100 150 200 250 300 350 400 450 500
Concurrency

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

B/
s)

Without prefetching With prefetching

Fig. 22: Transfer files on Lustre at NERSC to GPFS at the
ALCF.

higher throughput with less concurrency.
We note that experiments in Figure 22 do not use parallel

TCP streams for transferring each file, whereas the experi-
ments in Figure 17 uses four parallel streams for each file
transfer. This is the primary reason we still need a reasonably
high concurrency (although it is much lower when compared
with no prefetching) to achieve a high throughput.

VII. RELATED WORK

Many publications examine methods to optimize the perfor-
mance of large data transfers over wide area networks by
tuning application-level parameters. Liu et al. [17] developed

a tool to optimize multifile transfers by opening multiple
GridFTP threads. Their tool increases the number of concur-
rent flows up to the point where the transfer performance de-
grades. Their work also proved that the number of concurrent
transfer files can benefit a transfer only to some extent, causing
negative influence after that optimal point.

Kim et al. [18] proposed an application-layer throughput
optimization model based on prediction of the appropriate
number of parallel TCP streams. It relies on real-time network
probing, which either causes too much sampling overhead
or fails to predict accurately the correct transfer parameters
for long-running transfers when network conditions vary over
time.

Engin et al. [19] clustered files by size and then used a
heuristic approach to estimate the optimal Globus application-
level parameter values (i.e., pipelining, parallelism, and con-
currency) to be used in each cluster, in order to maximize the
overall transfer throughput in wide area networks. Specifically,
based on file characteristics and real-time investigation, their
algorithms dynamically tune parallelism per file, the level of
control channel pipelining, and the number of concurrent file
transfers to increase I/O throughput. In another work, Engin
et al. [20] combined historical data analysis with real-time
sampling to enable their algorithms to tune the application-
level data transfer parameters accurately and efficiently, in
order to achieve close-to-optimal end-to-end data transfer
throughput with low overhead.

Nine et al. [21] used historical knowledge about the network
and data to reduce the real-time investigation overhead while
ensuring near-optimal throughput for each transfer. However,
the dataset used in the work to benchmark the tool is not
sufficiently representative. As we presented in prior work [14],
dataset characteristics have a significant influence on transfer
performance. Furthermore, as we presented in this paper, even
the same dataset may need different concurrency choices for
different direction of two endpoints.

Rao et al. [22] studied the performance of TCP vari-
ants and their parameters for high-performance transfers over
dedicated connections by collecting systematic measurements
using physical and emulated dedicated connections. These
experiments revealed important properties such as concave
regions and relationships between dynamics and through-
put profiles. Their analyses enable the selection of a high-
throughput transport method and corresponding parameters for
a given connection based on round-trip time.

VIII. CONCLUSION

It is well known that file transfer tools tend to perform better
for datasets with a small number of large files than for datasets
with many small files. This performance degradation has long
been attributed to per-file overheads, but there has been little
understanding on where exactly this overhead comes from
and how different components in end-to-end file transfers
contribute to this overhead. We have reported here on a
thorough analysis of the per-file overheads introduced by the
major components in wide area file transfers. We showed that



in an end-to-end file transfer, the per-file overhead is signifi-
cantly higher than the maximum of the individual subsystems’
per-file overhead. We also showed that the average per-file
overhead can be reduced significantly for a representative
dataset with many thousands of files by transferring many files
concurrently, to the extent of achieving performance equivalent
to that of a dataset with an optimal number of files. As
an alternative to using high concurrency to reduce the per-
file overhead, we showed that prefetching can reduce per-file
overhead with much less concurrency.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, under contract number
DE-AC02-06CH11357. Z. Liu and Y. Liu contributed equally
to this research. We gratefully acknowledge the National
Energy Research Scientific Computing Center and Argonne
Leadership Computing Facility for providing us resources.

REFERENCES

[1] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka, V. Vishwanath, Z. Lukić,
S. Sehrish, and W. Liao, “HACC: Simulating sky surveys on state-of-the-
art supercomputing architectures,” New Astronomy, vol. 42, pp. 49–65,
2016.

[2] R. Kettimuthu, Z. Liu, D. Wheeler, I. Foster, K. Heitmann, and
F. Cappello, “Transferring a petabyte in a day,” Future Generation
Computer Systems, vol. 88, pp. 191–198, 2018. [Online]. Available:
https://doi.org/10.1016/j.future.2018.05.051

[3] Z. Liu, R. Kettimuthu, I. Foster, and N. S. V. Rao, “Cross-geography
scientific data transferring trends and behavior,” in 27th International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’18. New York, NY, USA: ACM, 2018, pp. 267–278.
[Online]. Available: http://doi.acm.org/10.1145/3208040.3208053

[4] Nersc, Science DMZ: Data Transfer Nodes, 2018 (accessed December
12, 2018), http://fasterdata.es.net/science-dmz/DTN/.

[5] K. Chard, S. Tuecke, and I. Foster, “Globus: Recent enhancements and
future plans,” in XSEDE16 Conference on Diversity, Big Data, and
Science at Scale. ACM, 2016, p. 27.

[6] “BBCP,” http://www.slac.stanford.edu/∼abh/bbcp/.
[7] FDT, FDT - Fast Data Transfer, 2018 (accessed January 3, 2018), http:

//monalisa.cern.ch/FDT/.
[8] Z. Liu, R. Kettimuthu, S. Leyffer, P. Palkar, and I. Foster,

“A mathematical programming- and simulation-based framework to
evaluate cyberinfrastructure design choices,” in IEEE 13th International
Conference on e-Science, Oct. 2017, pp. 148–157. [Online]. Available:
http://doi.org/10.1109/eScience.2017.27

[9] Lawrence Berkeley National Laboratory, ESnet’s Petascale DTN
Project Speeds up Data Transfers between Leading HPC Centers,
2018 (accessed September 3, 2018), https://cs.lbl.gov/news-
media/news/2017/esnets-petascale-dtn-project-speeds-up-data-transfers-
between-leading-hpc-centers/.

[10] Z. Liu, R. Kettimuthu, I. Foster, and Y. Liu, “A comprehensive study of
wide area data movement at a scientific computing facility,” in the 38th
IEEE International Conference on Distributed Computing Systems, ser.
2018 Scalable Network Traffic Analytics. IEEE, 2018.

[11] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, and I. Foster, “The Globus striped GridFTP framework
and server,” in ACM/IEEE Conference on Supercomputing, ser. SC
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 54–.
[Online]. Available: https://doi.org/10.1109/SC.2005.72

[12] ESnet SNMP data, 2018 (accessed September 3, 2018), https://graphite.
es.net/west/.

[13] K. Pearson, “Note on regression and inheritance in the case of two
parents,” Proceedings of the Royal Society of London, vol. 58, pp. 240–
242, 1895.

[14] Z. Liu, P. Balaprakash, R. Kettimuthu, and I. Foster, “Explaining wide
area data transfer performance,” in 26th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’17.
New York, NY, USA: ACM, 2017, pp. 167–178. [Online]. Available:
http://doi.acm.org/10.1145/3078597.3078605

[15] Z. Liu, R. Kettimuthu, I. Foster, and P. H. Beckman, “Toward a smart
data transfer node,” vol. 89, 2018, pp. 10–18. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X18302346

[16] Z. Liu, R. Kettimuthu, P. Balaprakash, and I. Foster, “Building a wide-
area data transfer performance predictor: An empirical study,” in the
1st International Conference on Machine Learning for Networking, ser.
MLN 2018. Springer, 2018.

[17] W. Liu, B. Tieman, R. Kettimuthu, and I. Foster, “A data transfer
framework for large-scale science experiments,” in 19th ACM
International Symposium on High Performance Distributed Computing,
ser. HPDC ’10. New York, NY, USA: ACM, 2010, pp. 717–724.
[Online]. Available: http://doi.acm.org/10.1145/1851476.1851582

[18] J. Kim, E. Yildirim, and T. Kosar, “A highly-accurate and low-overhead
prediction model for transfer throughput optimization,” Cluster Comput-
ing, vol. 18, no. 1, pp. 41–59, 2015.

[19] E. Arslan and T. Kosar, “A heuristic approach to protocol tuning for
high performance data transfers,” ArXiv e-prints, Aug. 2017.

[20] E. Arslan, K. Guner, and T. Kosar, “HARP: predictive transfer
optimization based on historical analysis and real-time probing,” in
SC’16, 2016, pp. 25:1–25:12. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3014904.3014938

[21] M. S. Zulkar Nine, K. Guner, Z. Huang, X. Wang, J. Xu, and T. Kosar,
“Data transfer optimization based on offline knowledge discovery and
adaptive real-time sampling,” ArXiv e-prints, Jul. 2017.

[22] N. S. Rao, Q. Liu, S. Sen, D. Towlsey, G. Vardoyan, R. Kettimuthu, and
I. Foster, “TCP throughput profiles using measurements over dedicated
connections,” in 26th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 2017, pp. 193–204.

https://doi.org/10.1016/j.future.2018.05.051
http://doi.acm.org/10.1145/3208040.3208053
http://fasterdata.es.net/science-dmz/DTN/
http://www.slac.stanford.edu/~abh/bbcp/
http://monalisa.cern.ch/FDT/
http://monalisa.cern.ch/FDT/
http://doi.org/10.1109/eScience.2017.27
https://doi.org/10.1109/SC.2005.72
https://graphite.es.net/west/
https://graphite.es.net/west/
http://doi.acm.org/10.1145/3078597.3078605
http://www.sciencedirect.com/science/article/pii/S0167739X18302346
http://doi.acm.org/10.1145/1851476.1851582
http://dl.acm.org/citation.cfm?id=3014904.3014938
http://dl.acm.org/citation.cfm?id=3014904.3014938

