

2015 WINTER SIMULATION CONFERENCE

DECEMBER 6-9, 2015

HUNTINGTON BEACH, CALIFORNIA

Simulating the Micro-level Behavior of Emergency Departments for Macro-level Features Prediction

Contributed by: Zhengchun Liu, Eduardo Cabrera, Dolores Rexachs, Francisco Epelde, and Emilio Luque

Presented by: Zhengchun Liu

High Performance Computing for

Efficient Applications and Simulation Research Group (HPC4EAS)

Computer Architecture & Operating Systems Department

Universitat Autònoma de Barcelona

Parc Taulí Sabadell Hospital Universitari

INTRODUCTION

> Emergency Department (ED) is the main entrance to healthcare system, the Efficiency and Quality of Service (QoS) in ED have big influence to the whole healthcare system.

> Patients arrive the ED without prior appointment, some of them with unstable conditions and must be treated quickly!

> Some EDs are overcrowding and work with limited budget.

> ED is a complex system with many constraints!

To make decisions to solve these problems, there are many questions should be answered first to support the decision (since EDs are stochastic environment and have time-dependent behavior, the decisions are not straightforward), e.g.,

If the number of patient arrival doubled, what will happen?

If we put 20 more careboxes (beds), how the overcrowding could be?

The budget will decrease, how QoS will be affected? which staff can be reduced? doctors? nurses? ... ?

How c Simulation ect of a decision without the commitment of any physical resources or interruption of the system?

- Introduction
- The Emergency Department Simulator
- Demo about Micro-to-Macro to insight the system
- Conclusion and Future work

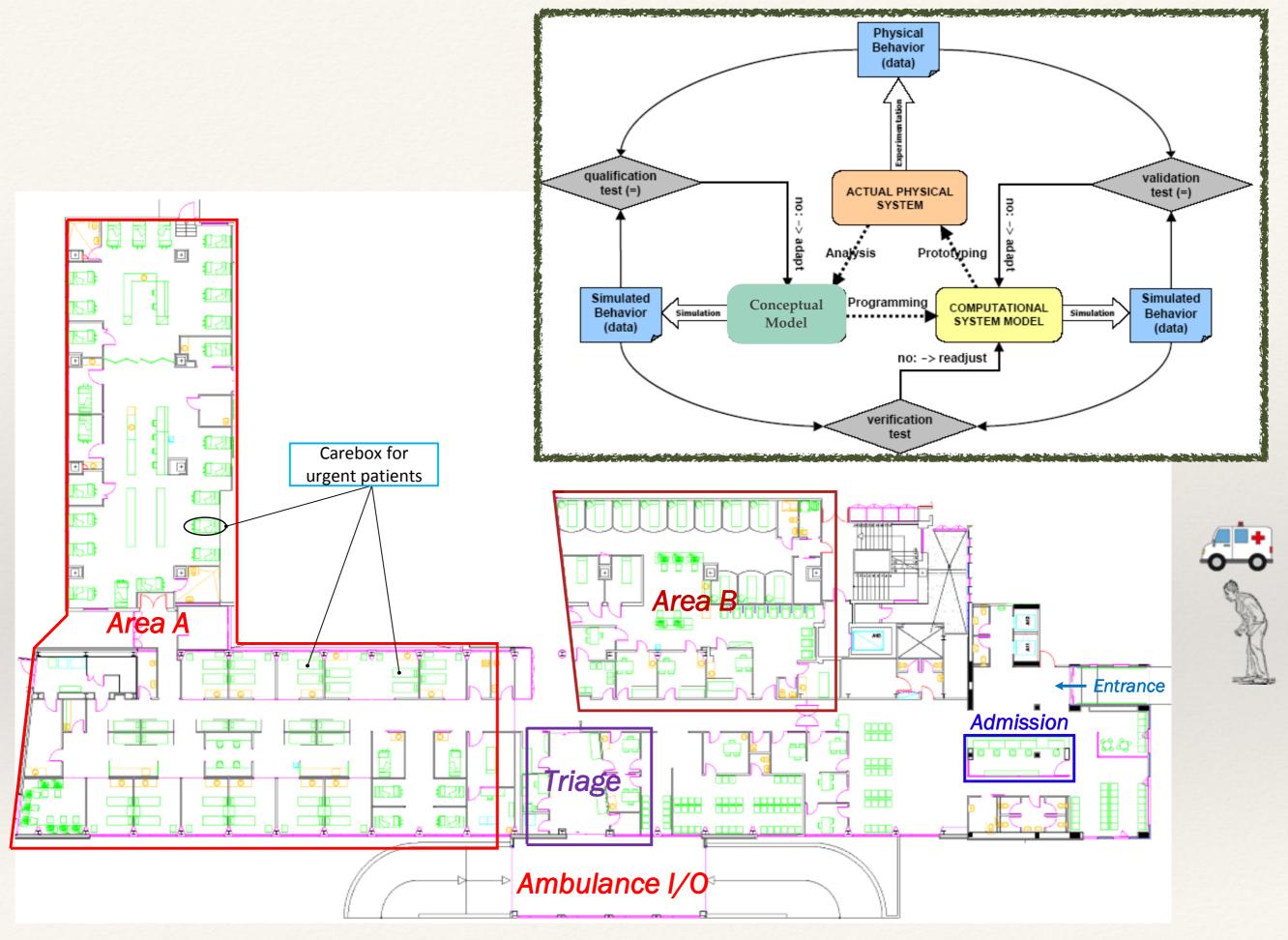
WHAT IS AN ED SIMULATOR?

Emergency Department:

Complex Adaptive System.

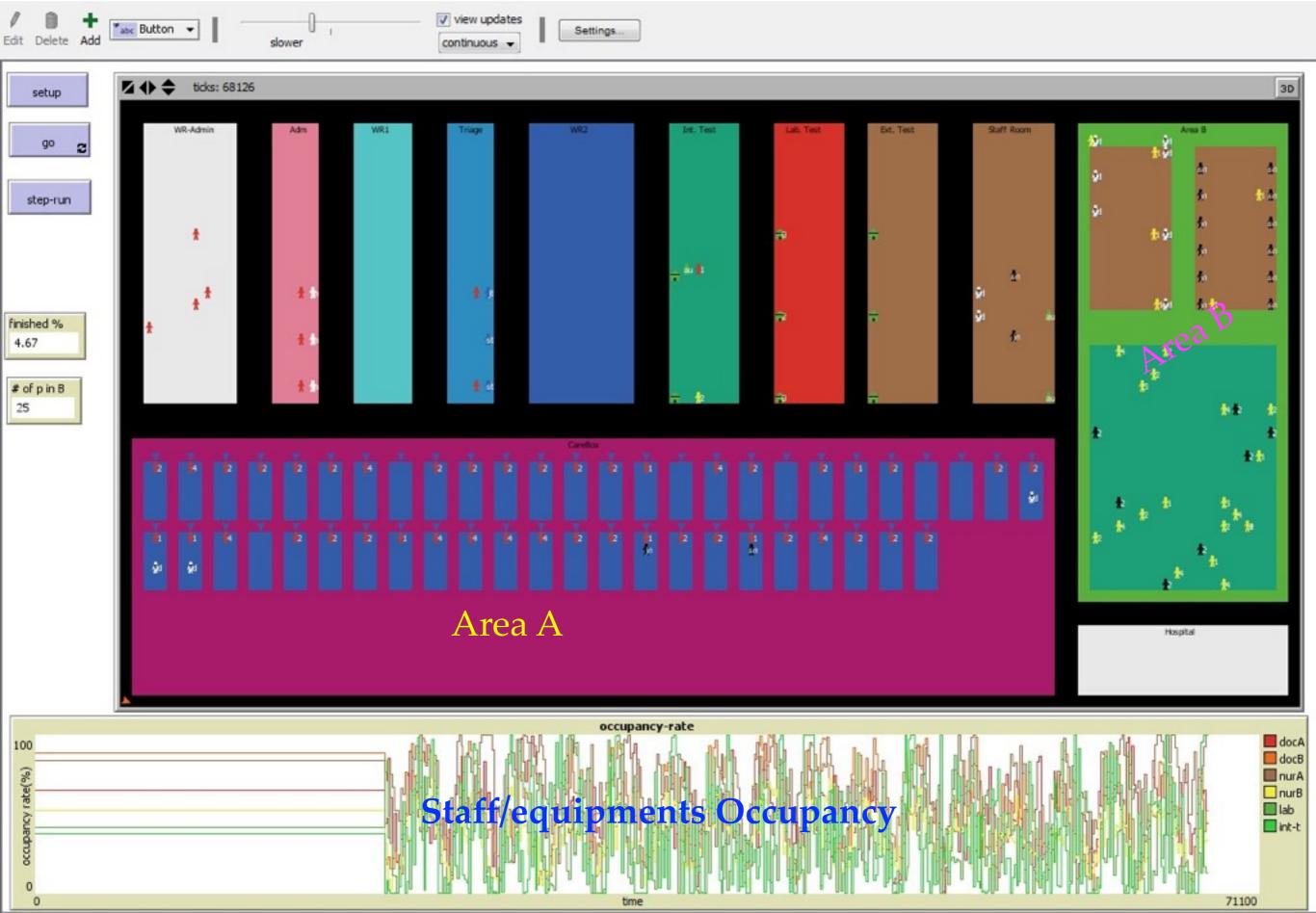
Model:

- Agent-Based Model;
- Generalized and Adaptable.


A complex system is one in which there are multiple **interactions** between many different **components**, low-level interactions among components **emerge** collective high-level results.

Emergent Property: an observation about a system that we might not anticipate from the separate study of its individual components (Holland, 1998; Strogatz, 2003).

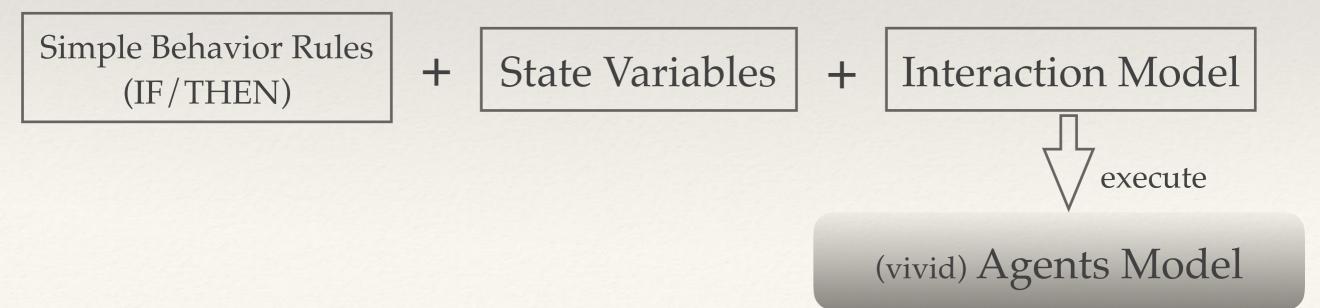
As the **components** of a system **interact** with each other, and **influence** each other through these interactions, the system as a whole exhibits emergent behavior (Roetzheim). This characteristic makes the output of a system difficult to understand and predict.


- Execution:
- Model was implemented in Netlogo;

HPC has been used to deal with the probabilistic agent model and study more scenarios in acceptable time frame.

One Typical ED (Parc Tauli) in Spain for Model Verification

THE EMERGENCY DEPARTMENT SIMULATOR



HOW DOES IT WORK?

Agent-Based Modeling & Simulation

¿Why?

- * It can provide a way to see the forest through the trees and, **insight** is often more **important** than sheer numbers.
- * Customizable/Flexible to study ED related problem, e.g., propagation of nosocomial infection, in which the principal way of the transmission is the frequent interaction between patients and healthcare staff.. (no system level knowledge needed, could focus in individual level).
- * To have **transparency** in prediction, not "black box" prediction. (to know the **root cause** of systematic behavior, i.e., **exploratory**, **descriptive** and **explanatory** feature.).

AGENT MODEL - MICRO BEHAVIOR RULES

Table 2: Behavior rules of patients.

IF	THEN				
notified by IS (before entering treatment area).	go to the corresponding place in the notification.				
no requests from IS (before entering treatment area).	keep staying in waiting room.				
no requests from IS or healthcare staff.	keep staying in carebox (for patients in area A).				
no interaction requested by nurse or doctor.	keep staying in waiting room (for patients in area B).				
notified by IS (in area B).	go to diagnosis room or medical image test-room as in-				
has any problem. patient	dicated in the notification.				
has any problem.	ask nurse through IS (the IS will notify the correspond-				
	ing nurse).				

Table 3: Behavior rules of registration staff / triage nurse.

IF	THEN
time to work.	interact with colleague in previous shift, take over ma-
	terials from them.
no patient in front of the desk/window.	wait for patient (IDLE)
one patient with the same queue number as usified in	interact with patient for registration/triage.
IS waiting in front of the desk.	
shifting of duty time is up.	accomplish work at hand, interact with colleague in fol-
IS waiting in front of the desk. shifting of duty time is up.	lowing shift, hand over requested material.
Admin	

AGENT MODEL - MICRO BEHAVIOR RULES

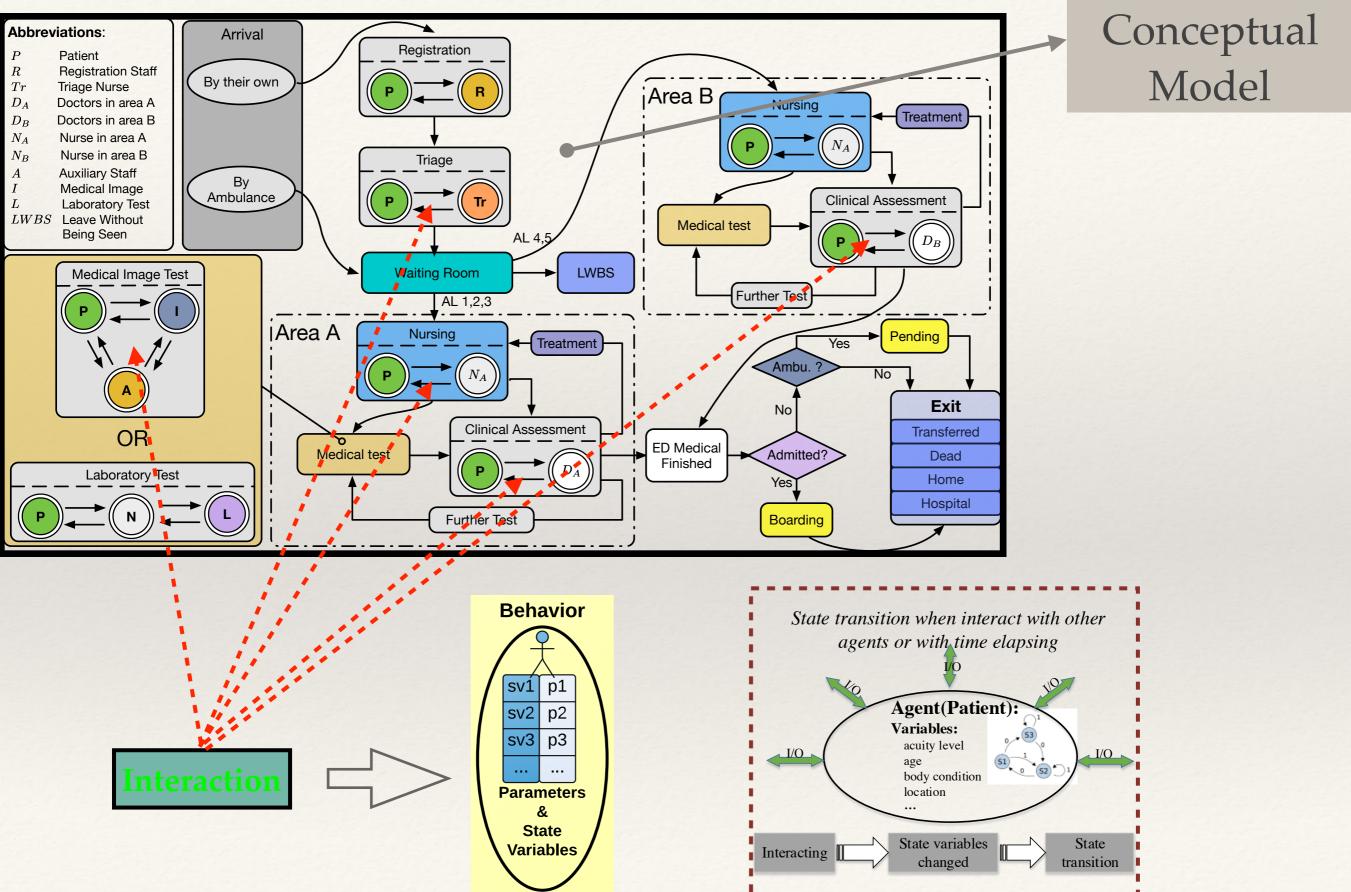
Table 4: Behavior rules of doctors.

IF	THEN			
time to work.	interact with doctor in previous shift, take over patients			
	from them.			
no task assigned by IS (task queue is empty).	stay in their office (IDLE).			
IS notified a new patients in cb_i .	move to cb_i , perform first-interaction, make treatment			
	plan.			
IS notified: the test report for one of the patients in D_i^P	review medical test report, walk to the carebox if neces-			
is ready to review.	sary, and make follow-up treatment plan (do more test,			
	drug therapy, discharge or admit to hospital).			
scheduled drug therapy time of any patient in D_i^P is up.	walk to the carebox, check effect of drug therapy, and			
tor	make follow-up treatment plan.			
shifting of duty time is up.	accomplish work at hand, interact with doctors in fol-			
V	lowing shift, hand over all the patients in D_i^P .			

Table 5: Behavior rules of nurses.

IF	THEN			
time to work.	interact with nurse in previous shift, take over patients			
	from them (in area A).			
no task assigned by IS (task queue is empty).	stay in the nurse room.			
doctor assigned laboratory test to one of the patients in	walk to carebox N_i^{cb} (in area A), taking sample from			
set N_i^p	patient.			
drug therapy assigned to one of the patients in set N_i^p by	go to the pharmacy, take pill and then walk to the place			
doctor.	of patient for treatment.			
Periodic checking time is up.	Check every patient's body condition in set N_i^p .			
Periodic checking time is up. doctor discharged one patient in set N_i^p .	help patient leaving ED.			
shifting of duty time is up.	accomplish task at hand, interact with nurses in follow-			
	ing shift, hand over all the patients in set N_i^p .			

AGENT MODEL - MICRO BEHAVIOR RULES


Table 7: Behavior rules of laboratory test-room.

IF	THEN
no sample in the queue.	waiting for sample (IDLE).
new sample(s) waiting in the queue, and there are free	detach sample(s) to free machine(s).
analyzing machine(s).	n .
analyzing machine(s) completed the analysis	catch results and send to the corresponding doctor
analyzing machine(s) completed the analysis	through IS.
daily machine maintenance time is up.	start maintaining when machine completes current task.
Lan	

Table 6: Behavior rules of medical image test-room.

	om
IF	THEN
no patient waiting outside.	waiting for patient (IDLE).
patient with auxiliary staff waiting outside, and test-	interact with patient and accompanied auxiliary staff.
room is ready.	
physical test finished.	process test results, and send to the corresponding doc-
physical test finished.	tor through IS.

HOW IT WORKS (RULES + STATE VARIABLES => STATE)

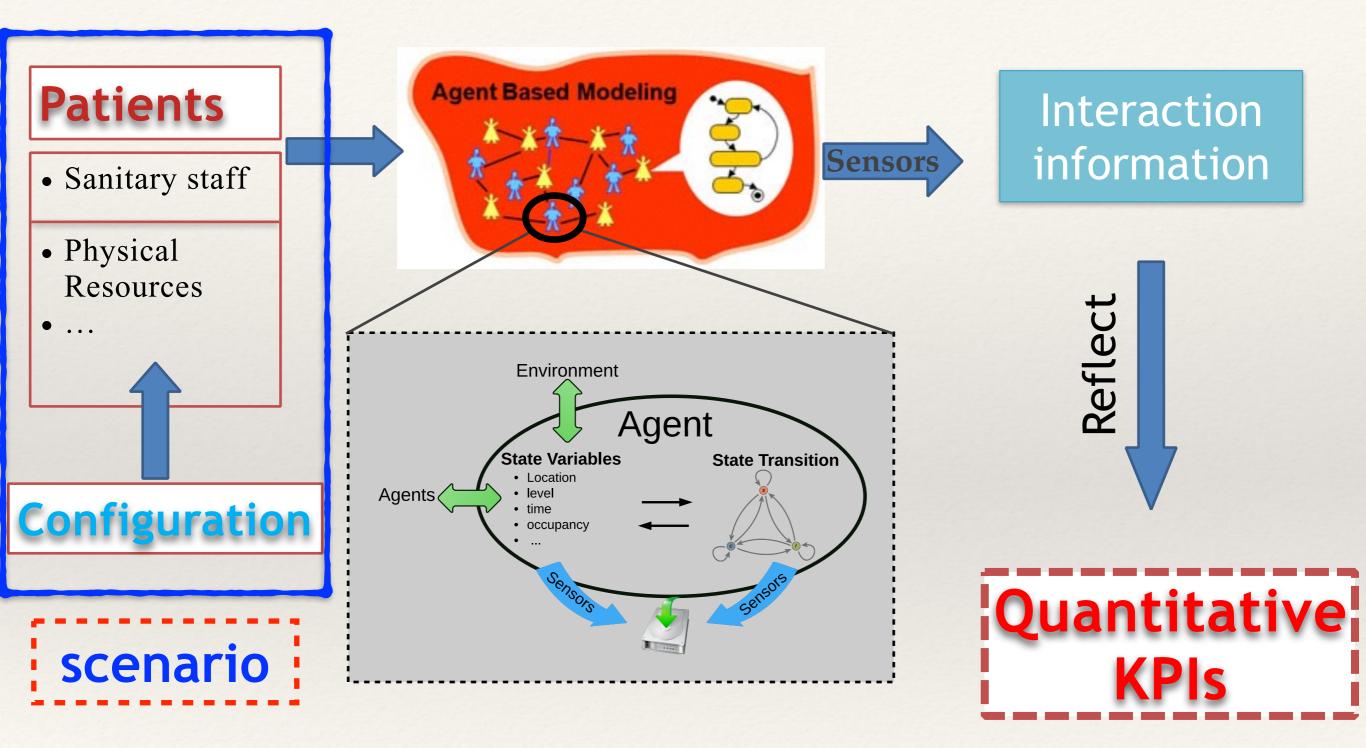

HOW IT WORKS (RULES + STATE VARIABLES)

Table 8: Part of a patient's interaction log.

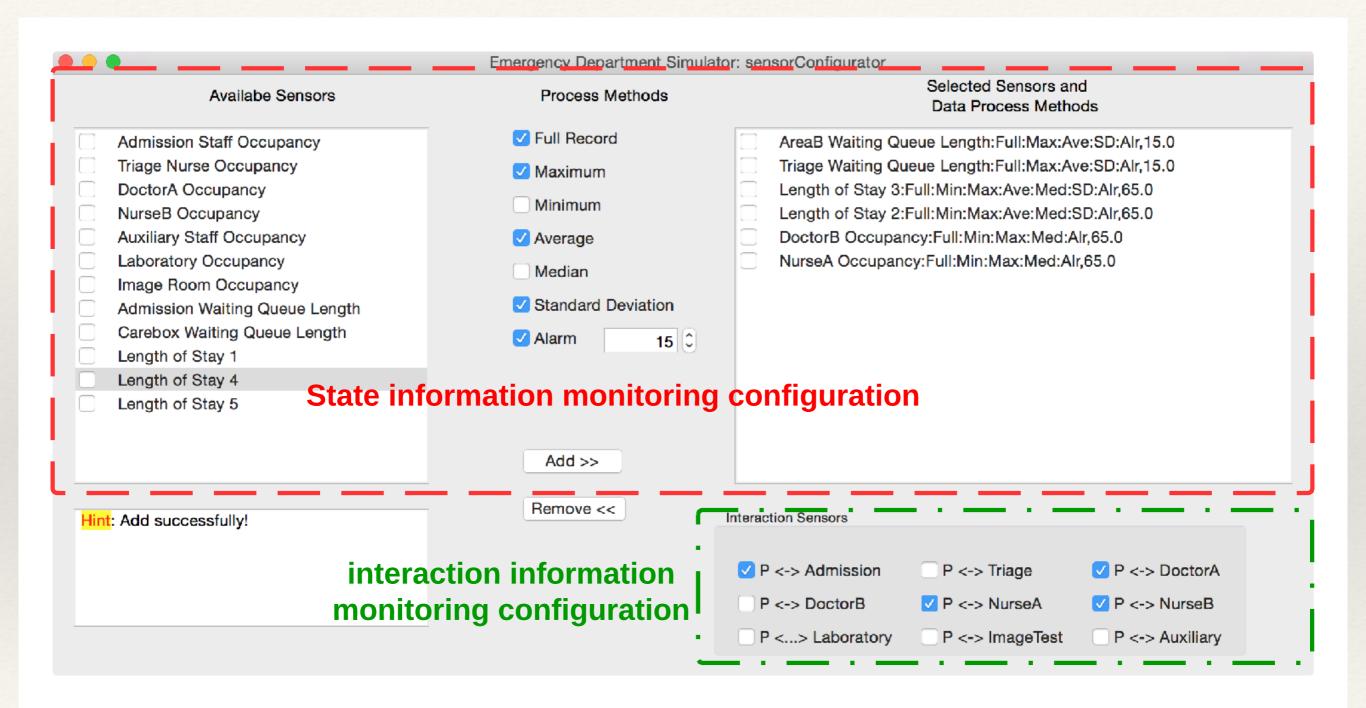

State	Source State	Destination state	Input
•••	••••		
S_t	Waiting for service (free care-	Waiting for service (Doctor's	Notice from IS with a free care
	box).	diagnosis).	box.
S_{t+1}	Waiting for service (doctor's di-	Accepting Service(meet with	Doctor arrive at patient's care-
	agnosis)	doctor)	box.
S_{t+2}	Accepting Service(meet with	Waiting for service (X-Ray test	Doctor order X-Ray test for pa-
	doctor)	service)	tient.
S_{t+3}	Waiting for service (X-Ray test	Accepting Service(X-Ray test	X-Ray service available.
	service)	service)	
S_{t+4}	Accepting Service(X-Ray test	Waiting for service (Doctor's	X-Ray service finished.
	service)	review of the test result)	
	•••		

Table I: A PART OF A NURSE'S STATE TRANSITION.						
			Input			
		•••				
S_t	Waiting for task.	Meet with patient(take blood sample).	blood test task from IS			
S_{t+1}	Meet with patient.	Waiting for task.	sample take finished			
$\bullet S_{t+2}$	Waiting for task.	Meet with patient(for treatment)	treatment task from IS.			
S_{t+1}	Meet with patient.	Waiting for task.	treatment task finished			
S_{t+1} S_{t+3}	Waiting for task.	Meet with patient(help discharging)	Discharging task from IS.			
•	• • • •	•••	•••			

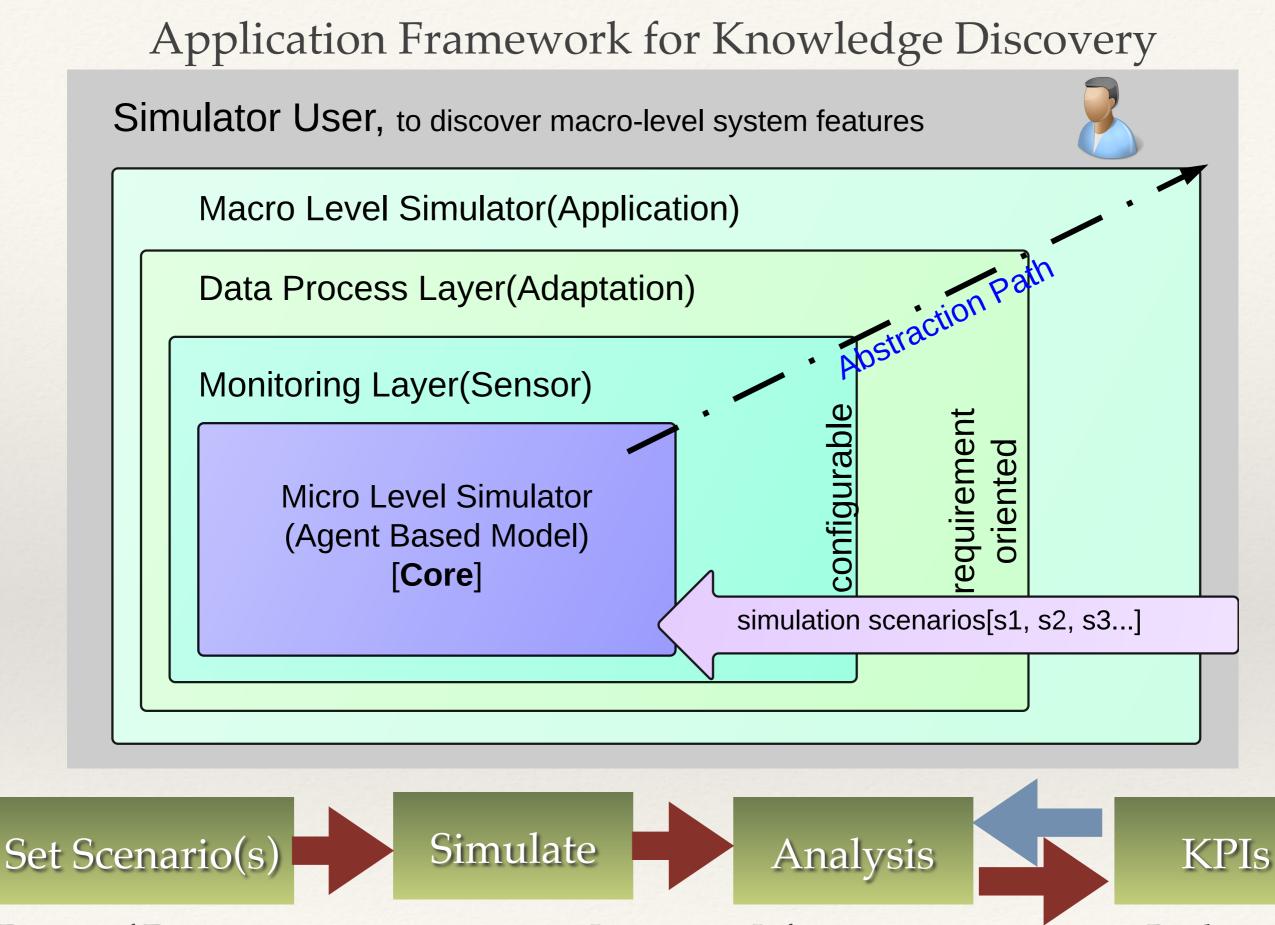
HOW IT WORKS (TRANSFORM, INPUT -> OUTPUT)

Sensor configuration GUI

AGENTS' INTERACTION RECORDS

1	who	what	when(minute)	where	why	how long(second)
86179	(doctorb 76) and (patient 16279)	first-visit	70446	doctorB's room	default	1200
86180	(doctorb 74) and (patient 16283)	first-visit	70447	doctorB's room	default	900
86181	(nursea 80) and (patient 16158)	go-home	70447.5	carebox	default	150
86182	(doctorb 75) and (patient 16277)	first-visit	70448	doctorB's room	default	210
86183	(doctorb 78) and (patient 16222)	treatment-finished	70449	doctorB's room	default	1320
86184	(doctora 69) and (patient 16211)	test-result-review	70449.5	carebox	default	330
86185	(doctorb 73) and (patient 16281)	first-visit	70449.5	doctorB's room	default	1290
86186	(admission 1) and (patient 16285)	admission	70451.5	admission desk	default	300
86187	(doctora 67) and (patient 16199)	test-result-review	70451.5	carebox	default	120
86188	(nursea 80) and (patient 16199)	laboratory test	70453.5	carebox	default	1080
86189	(nursea 84) and (patient 16211)	go-hospital	70455	carebox	default	1290
86190	(doctora 69) and (patient 16262)	test-result-review	70455.5	carebox	default	450
86191	(doctorb 77) and (patient 16154)	treatment-finished	70455.5	doctorB's room	default	510
86192	(doctora 66) and (patient 16033)	test-result-review	70456.5	carebox	default	300
86193	(doctorb 72) and (patient 16247)	test-result-review	70457	doctorB's room	default	360
86194	(admission 2) and (patient 16288)	admission	70460	admission desk	default	240
86195	(doctora 71) and (patient 16236)	treatment-finished	70462	carebox	default	390
86196	(doctorb 74) and (patient 16180)	test-result-review	70462.5	doctorB's room	default	360
86197	(doctora 70) and (patient 16284)	first-visit	70464.5	carebox	default	480
86198	(doctorb 72) and (patient 16285)	first-visit	70465.5	doctorB's room	default	300
86199	(doctorb 77) and (patient 16228)	treatment-finished	70465.5	doctorB's room	default	180
00000	(00) 1 (.1 . 10100)	i	50100 5	•	1 0 1.	= 1.0

Extract


• Length of Stay, Occupancy, Length of Waiting, Efficiency, ...

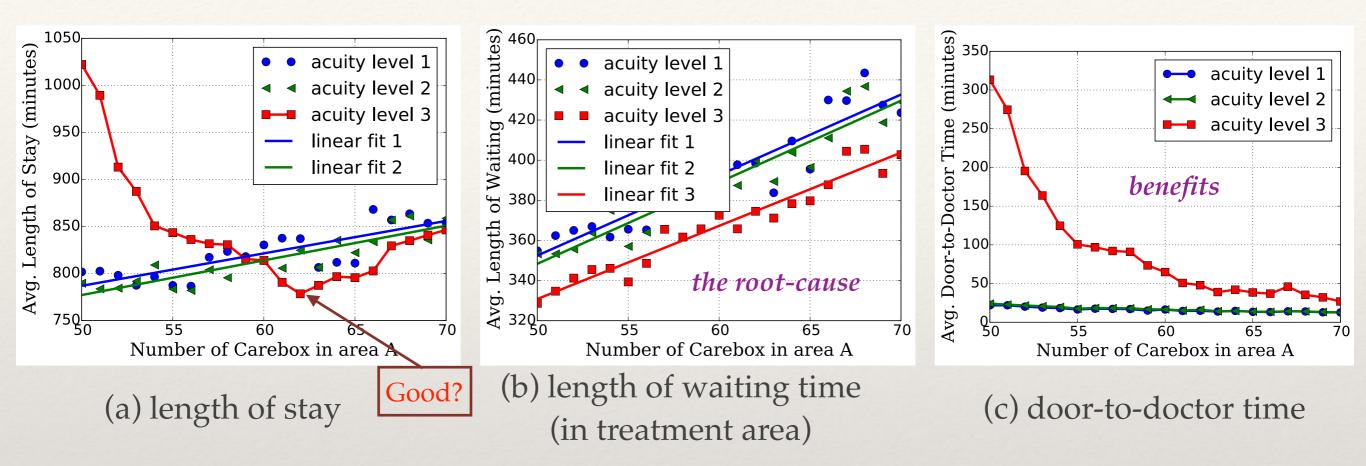
Design of your experiments

ED Simulator

			Resource	Cana	city (#)	Avg. Attention	Time	(AT. minutes)	AT Distributic
	√admission staff			day	$\frac{109}{\text{night}}$	first interaction		follow-up	-
			junior admission staff	3	2		5	÷	Gamma
	√triage nurse		senior admission staff	2	0		3		I Gamma
	√nurse		junior triage nurse	3	1		8		Gamma
			senior triage nurse	2	1		6		Gamma
	√doctor		junior doctor in area A		2	20		15	• exponential
configuration	√auxiliary		senior doctor in area A		4	15		13	exponential
H			junior nurse in area A		5	25		18	exponential
	√carebox		senior nurse in area A		5	20		14	exponential
			doctor in area B		2	8		7	exponential
	√laboratory test		sen or doctor in area B		5	6		5	exponential
Ē	√internal test		junior nurse in area B	_	4	11 7	_		exponential
O I			senior nurse in area B	F	4 2	(45	5	exponential
U	√external test		medical imaging test room laboratory test place	$\frac{5}{4}$	$\frac{2}{2}$		$\frac{45}{30}$		Beta Beta
	√hospital ward		carebox in area A		50		30		Deta
	•		chair in area B		60		_		
	√ambulance.		auxiliary nursing staff		3		15		exponential
	1				-				
	√				_				Chatiatical
					Sho	uld Execute			Statistical
									Model
						ny Times for			
pati	ient(input)				One	e Scenario			
			Mon - Actual •-• Mon - Simu Tue - Actual •-∢ Tue - Simu			60	•••• AL = 1	$\longleftrightarrow AL = 2 \qquad \blacksquare \qquad AL = 3 \qquad \longleftrightarrow$	AL = 4 → AL = 5
		1.2	Wed - Actual Wed - Simu Thu - Actual Thu - Simu			50			
	scenario :		Fri - Actual +-+ Fri - Simu			(%) UC (%)		\sim	
	Section 10	■ of we	Sun - Actual •-• Sun - Simu			uti 1puti	<u> </u>	~	
		0.8				00 dist			
		0.6		*	***				
						Acuity			
						10	\supset		
		Linop					×		
		0.0	5 10	15	20	θ	5	10 Arrival time (hour)	15 20
Scor	nario = ED-Model-C	onto		Jati C	10 ± 1				

Scenario = ED-Model-Configuration + Input (Patient)

Design of Experiments

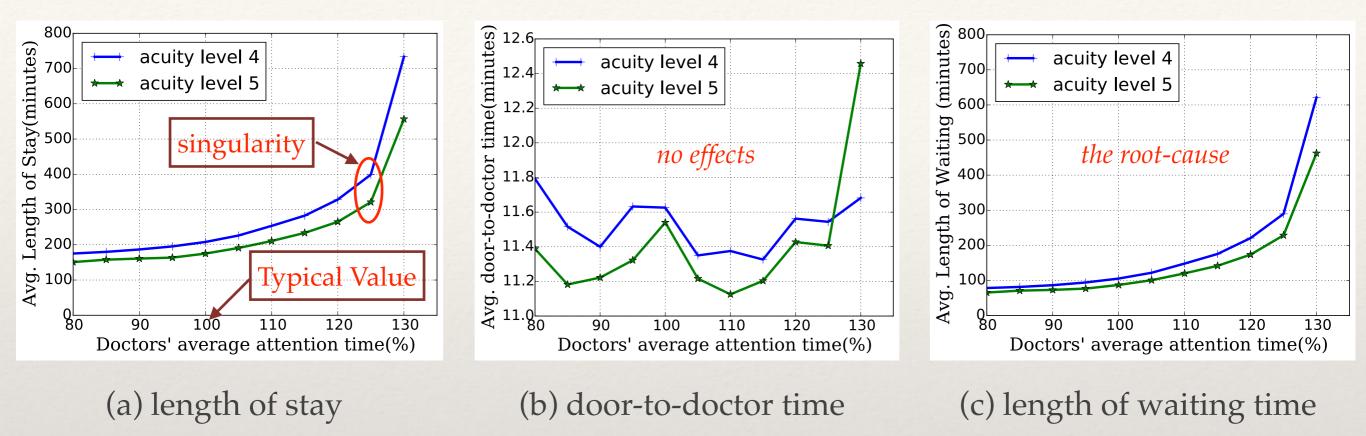

Interaction Info.

Predictions

Demo No. 1

The emergency department system is **overcrowding**, WHAT-IF we add 20 beds to the system?

The influence of additional carebox on patients' behavior (Area A).


note: the scale of vertical coordinates are different.

LoS, LoW system components

Demo No. 2

Explore the effects of doctors' behavior on the system-level behavior. and Explain why (identify the root cause).

The effect of length of doctors' (area B) attention time on macro-level LoS, and the root cause identification.

note: the vertical coordinate scale of (b) is quite different as (a) and (c)

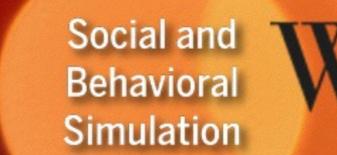
LoS, LoW doctors' behavior

Conclusion

- This article presents an approach to discover knowledge of emergency department through simulating individual behavior of its components.
- * It provides a way to see the forest through the trees and, insight is often more important than sheer numbers.
- * The model is customizable from individual level, the atomic data about agent interaction and environment state record are provided by customizable "sensor".

Future work

* Develop an automatic calibration/tuning tool along with the model for users to calibrate and validate the model parameters for their EDs without the involvement of model developer.


Connections

=> **Poster** (Agent Based Poster Madness M1, 5:15pm-5:45pm, Monday, Salon A)

ABMS Simulator of Propagation of Nosocomial Infection in Emergency Department (*Note: Principal way of MRSA transmission is the frequent interaction between patients and healthcare staff.*)

=> **Poster** (New Simulation Applications Poster Madness M4, 5:15pm-5:45pm, **Monday**, **Catalina**)

Evaluation of Performance and Response Capacity in Emergency Departments

2015 WINTER SIMULATION CONFERENCE

DECEMBER 6-9, 2015

HUNTINGTON BEACH, CALIFORNIA

Thanks for Your Attention!

Simulating the Micro-level Behavior of Emergency Departments for Macro-level Features Prediction

Contributed by: Zhengchun Liu, Eduardo Cabrera, Dolores Rexachs, Francisco Epelde, and Emilio Luque

Presented by: Zhengchun Liu

Email: <u>lzhengchun@caos.uab.es</u>

High Performance Computing for

Efficient Applications and Simulation Research Group (HPC4EAS)

Computer Architecture & Operating Systems Department

Universitat Autònoma de Barcelona

Parc Taulí Sabadell Hospital Universitari

http://grupsderecerca.uab.cat/hpc4eas/