

The Sixth International Conference on Advances in System Simulation (SIMUL 2014)

A Generalized Agent-Based Model to Simulate Emergency Departments

Zhengchun Liu: <u>liuzhengchun@gmail.com</u> Eduardo Cabrera: <u>ecabrera@caos.uab.es</u> Dolores Rexachs: <u>dolores.rexachs@uab.es</u> Emilio Luque: <u>emilio.Luque@uab.es</u>

http://grupsderecerca.uab.cat/hpc4eas/

OUTLINE

- Introduction of Emergency Department (ED); What?
- Model of Emergency Department; How?
- Possibility of the Simulator;
- Conclusion and Future work.

State?

INTRODUCTION

>Emergency Department (ED) is the main entrance to healthcare system, the Efficiency and Quality of Service in ED has big influence to the whole healthcare system.

>Patients arrive the ED without prior appointment, some of them with unstable conditions and must be treated quickly!

>EDs are overcrowded and work with limited budget.

>ED is a complex adaptive system!

Indiality to parts

How to solve these problems?

To make decisions to solve these problems, there are many questions should be answered first to support the decision, e.g.:

✤If the number of arrival patients doubled, what will happen?

✤If we increase 20 more careboxes, the overcrowd can be solved?

The budget decreased, how QoS will be affected? which staff can be reduced? doctor? nurse? ... ?

*****... ...

How to solve these problems?

To make decisions to solve these problems, there are many questions should be answered first to support the decision, e.g.:

✤If the number of arrival patients doubled, what will happen?

✤If we increase 20 more careboxes, the overcrowd can be solved?

The budget decreased, how QoS will be affected? which staff can be reduced? doctor? nurse? ... ?

*****... ...

How can we know the effect of a decision without the commitment of any physical resources or interruption of the system?

How to solve these problems?

To make decisions to solve these problems, there are many questions should be answered first to support the decision, e.g.:

✤If the number of arrival patients doubled, what will happen?

✤If we increase 20 more careboxes, the overcrowd can be solved?

The budget decreased, how QoS will be affected? which staff can be reduced? doctor? nurse? ... ?

*****....

Simulation

SUUCIOU

WHAT IS AN ED SIMULATOR?

Emergency Department:

Complex system.

☞Model:

Agent based model;

Generalized and Adaptive.

☞Execution:

- Model was implemented on Netlogo;
- HPC is used to deal with massive data and computing;
- HPC was used to simulate different scenarios

General process of patient in ED

How IT WORKS?

Bottom-up-Approach

How IT WORKS?

AGENT DEFINITION

Agent	$A = \{V \cup B\}$
State	$V = \{V_1, V_2, \dots, V_m\}$
Behavior	$B = \{B_1, B_2, \dots, B_n\}$
State Variable	$V_i = \{Y_1, Y_2, Y_3, \dots, Y_{K_i}\} (0 \le i \le m)$
State transition	$Y_{K_i} = f(B_j, T) (0 \le i \le m, 0 \le j \le n)$

AGENTS AND THEIR ABSTRACT BEHAVIOR:

Table 1: AGENTS AND AGENTS' BEHAVIOR			
\mathbf{Agent}	Behavior		
Patient	Waiting for service.		
	Accepting service.		
	Waiting for treatment takes effect.		
Admission Staff	Provide admission service for patient.		
	Waiting for next patient.		
Triage Nurse	Provide triage service for patient.		
	Waiting for next patient.		
Doctor	Look over test result.		
	Provide diagnostic service.		
	Arrange test for patient.		
	Arrange treatment plan.		
	Waiting for task.		
Auxiliary Staff	Moving patient to the specific place.		
	Waiting for task.		
Nurse	Take and send samples for laboratory test.		
	Provide treatment service.		
	Waiting for task.		
	Accept sample from nurse.		
Talana tana Tat	Analyze samples of patient.		
Laboratory Test	Send analyzing result to the corresponding doctor.		
	Waiting for samples.		
Internal Test	Provide test service.		
	Send analyzing result to the corresponding doctor.		
	Waiting for next patient.		
External Test	Provide test service.		
External lest	Send analyzing result to the corresponding doctor.		
Ambulance	Providing service to patients.		
	Waiting for task.		
Carebox	Providing treatment place to patient.		
	Waiting for next patient.		

AN EXAMPLE OF A PATIENT'S STATE TRANSITION

State index	Source State	Destination state
•••		
S_t	Waiting for service (free carebox).	Waiting for service (Doctor's diagnosis).
S_{t+1}	Waiting for service (doctor's diagnosis)	Accepting Service(meet with doctor)
S_{t+2}	Accepting Service(meet with doctor)	Waiting for service (X-Ray test service)
S_{t+3}	Waiting for service (X-Ray test service)	Accepting Service(X-Ray test service)
S_{t+4}	Accepting Service(X-Ray test service)	Waiting for service (Doctor's review of the test res
•••		

$T_{abl} \rightarrow \Lambda$ part of a datient's state transition

WHAT CAN WE DO WITH THE ED-SIMULATOR?

HPC makes it possible:

High Performance can provide abundant computational resources and store/process massive data.

What do we plan to do:

We describe an agent based model of an emergency department and its utility for evaluating decision/changes. (decision support)

Help us to better understand and manage emergency departments. (discovery knowledge of ED)

Provide a platform for ED related problem studying.

POSSIBILITY OF SIMULATOR

Simulation condition:

Virtual ED

Scenario

configuration

Number of patients in waiting room

non-urgent patients(acuity level 4 and 5)

urgent patients(acuity level 1,2 and 3)

Utilization

19

Area A

Patients with acuity level 1

Patients with acuity level 2

Patients with acuity level 3

LoS distribution

Area B

QoS ?

Patients with acuity level 5

CONCLUSION AND FUTURE WORK

- First, we created a generalized agent-based model of ED and implemented the model in Netlogo simulation environment.
- Then, we performed verification to debug the model and ensure that it performed as intended.
- Next, we will complete validation of the model to ensure that it behaved as it would in real life and that it accurately represented the patient flow at Emergency Department.
- Perform data mining to discover interesting knowledge about ED and try to answer some interesting question for decision making.

RELATED PRESENTATION IN SIMUL2014:

High Performance Computing for Efficient HPC 4 Applications and Simulation Research Group(HPC4EAS) http://grupsderecerca.uab.cat/hpc4eas/

Modeling the Contact Propagation of Nosocomial Infection in Hospital Emergency Department. Tuesday, October 14, 10:30 - 12:15; SIMUL 4

Simulation as a Sensor of Emergency Department: Providing Data for Knowledge Discovery. Thursday, October 16, 09:00 - 10:45; SIMUL 9

Thanks for your attention!!

The Sixth International Conference on Advances in System Simulation (SIMUL 2014)

A Generalized Agent-Based Model to Simulate Emergency Departments

Zhengchun Liu: <u>liuzhengchun@gmail.com</u> Eduardo Cabrera: <u>ecabrera@caos.uab.es</u> Dolores Rexachs: <u>dolores.rexachs@uab.es</u> Emilio Luque: <u>emilio.Luque@uab.es</u>

http://grupsderecerca.uab.cat/hpc4eas/

