Log-Based ldentification, Classification, and Behavior
Prediction of HPC Applications

Ryan D. Lewis
Department of Computer Science
Northern Illinois University
rlewis5@niu.edu

Rajkumar Kettimuthu
Data Science and Learning Division
Argonne National Laboratory
kettimut@anl.gov

ABSTRACT

Leadership supercomputers, such as those operated by the Argonne
Leadership Computing Facility (ALCF), provide an important av-
enue for scientific exploration and discovery, enabling simulation,
data analysis & visualization, and artificial intelligence at massive
scale. As we move into the exascale supercomputing era in 2021
with the advent of Aurora, Frontier, and other exascale machines,
it’s important that we are able to understand the interactions be-
tween the applications being run, and the hardware they run on, to
optimize the use of these expensive and high-demand resources.
In previous work, we analyzed a collection of production ma-
chine scheduling and performance logs to better understand appli-
cation behaviors and characteristics. This work further refines our
understanding of how scientific users leverage leadership comput-
ing resources; we show that system-level hardware performance
counters can work as a lightweight, low-overhead alternative to
more performance-intensive benchmarking and logging instrumen-
tation for certain data analysis tasks. We also demonstrate a method
for predicting application runtimes on leadership computing re-
sources using data gathered from logging sources at submission.

CCS CONCEPTS

« Computing methodologies — Cross-validation; Supervised learn-
ing by classification; Supervised learning by regression; » Software
and its engineering — Operational analysis.

KEYWORDS

High Performance Computing; Logs data mining; Application Iden-
tification; Characterization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPCSYSPROS’20, November 13, 2020, Atlanta, GA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

Zhengchun Liu
Data Science and Learning Division
Argonne National Laboratory
zhengchun liu@anl.gov

Michael E. Papka
Leadership Computing Facility
Argonne National Laboratory

Department of Computer Science
Northern Illinois University
papka@anl.gov

ACM Reference Format:

Ryan D. Lewis, Zhengchun Liu, Rajkumar Kettimuthu, and Michael E. Papka.
2020. Log-Based Identification, Classification, and Behavior Prediction of
HPC Applications. In HPCSYSPROS 20: HPCSYSPROS SC20 Workshop Pro-
ceedings, November 11-13, 2020, Atlanta, GA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

In modern high-performance computing (HPC), especially at leader-
ship computing facilities, a great deal of log creation and collection
occurs essentially all the time. Whether it is administrative, sched-
uling, performance monitoring, debugging, or diagnostic in nature,
a single supercomputer at a user facility like the ALCF generates
vast quantities of log data every day.

Argonne’s recently decommissioned Mira supercomputer, a 10-
petaflops Blue Gene/Q machine that went into production in 2013
and ceased operation at the end of 2019, was no exception to that
rule. The combination of Mira’s approach to isolating jobs to pre-
vent cross-job interference, and a tendency towards repetitious,
patterned behavior by users and applications (explored in section 2),
mean that Mira’s logs provide a perfect opportunity to perform
correlative data analysis and visualization, allowing numerous in-
sights into HPC applications, user demands, and resource usage
characteristics on leadership machines. We also believe that this
characterization will be useful for optimizing facility management,
improving energy efficiency, and optimizing scheduling policy on
current and future Leadership computing resources.

Our analysis efforts primarily targeted 3 different areas: appli-
cation identification and identity verification, application runtime
prediction, and application resource-intensiveness classification.
Insights in all these areas are of potential interest to Leadership
Facility staff or users.

The primary contributions of this paper are the following:

o We evaluated whether hardware performance counters could
act as a viable alternative representation for higher-overhead
instrumentation in HPC application identification and char-
acterization.

e We evaluated the use of log-based analysis for prediction
of application runtimes with the information available at


https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

HPCSYSPROS’20, November 13, 2020, Atlanta, GA

submission, and the potential effect of runtime prediction
for scheduling.

e We evaluated the effectiveness of using hardware perfor-
mance counters for minimal-overhead application classifica-
tion of resource-intensiveness.

The rest of this paper is organized as follows: we introduce nec-
essary Background knowledge in section 2, including a discussion
of the supercomputer we analyzed and the data logging sources
we included; we then explore the analysis Methods and Results in
section 3; finally, we include a Discussion of our findings in §3.4. In
§4 we review related work, and in §5 we summarize our conclusions
and discuss future work.

2 BACKGROUND
2.1 The Mira Supercomputer

Our analysis primarily used logs collected from jobs run on Ar-
gonne’s Mira supercomputer, a 10 petaflops—i.e., 101® or ten thou-
sand trillion floating point operations per second—IBM Blue Gene/Q
system. This machine was in production from its launch in 2013
until it was decommissioned at the end of 2019 to make way for
Aurora, its exascale successor, set to launch in 2021.

Mira consisted of 48 racks containing a total of 49, 152 computing
nodes, each equipped with a 16-core, 1.6-GHz IBM PowerPC A2
processor for a total of 786,432 cores, interconnected with a pro-
prietary 5D torus network. Each node was equipped with 16 GB of
RAM, with the machine totaling an impressive 768 TB of RAM. For
storage, Mira was equipped with two General Parallel File Systems
(GPFS) with 20 and 7 petabytes of capacity, respectively.

2.2 Datasets and Logs

Our analysis relied on the 5 datasets! described below, drawn from
Mira logs collected at the ALCF. Anonymized and cleaned, publicly-
available versions of all but the Tracklib dataset are available on-
line?.

2.2.1 Autoperf. Autoperf [4] is a library for automatically collect-
ing hardware performance counter and MPI usage statistics. For
every MPI process spawned by a job, Autoperf records the number
of MPI routine calls made, the time spent in each routine, and the
total bytes communicated by each routine. This information, along
with other performance data such as basic hardware performance
counters, is collected over the course of the job and then saved to
log files on job completion. In order to minimize overhead and save
storage space, Autoperf records only the maximum, minimum, and
average values—as well as the value from MPI rank 0—for each
counter across all MPI processes of a given execution. It is enabled
by default on Mira, but can be disabled by the user. Autoperf logs
may be absent for a number of other reasons, including applications
which do not use MPI or which fail to call MPI_Finalize, or which
are built or linked with a conflicting/unsupported compiler or pro-
filing library. As a result, the Autoperf dataset used in this paper

IThis data was generated from resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357.

Zhttps://reports.alcf.anl.gov/data/

Ryan D. Lewis, Zhengchun Liu, Rajkumar Kettimuthu, Michael E. Papka

contains records for 377,969 tasks run on Mira from 2016-2019:
about 22% of all tasks run on Mira during that period.

2.2.2  Darshan. Darshan [2] is another performance logging tool
used extensively at the ALCF. Where Autoperf collects informa-
tion on MPL, Darshan provides a granular look at the input/output
(I/O) instrumentation, behavior, and performance of production
applications. This includes collecting information on the number
of files opened, how much time is spent performing various types
of file operations, the number of bytes accessed, and so on. Many
of these counters are broken into subcategories: MPI versus POSIX
operations; read, write, and metadata operations, etc. Like Autop-
erf, Darshan was enabled by default on all production applications
run on Mira, but could be disabled by the user. This paper uses a
dataset containing records for 385.023 tasks executed on Mira from
2016-2019: about 23% of all tasks run on Mira during that period.

2.2.3  Control System Logs. Whenever a job is scheduled and run
on an ALCF supercomputer such as Mira, it has the ability to spawn
multiple applications—working in series or in parallel—to perform
work on the machine. Each such application execution spawned
is managed by the control system as a separate task and given its
own unique control system ID, and the control system records its
executable ID, start time, end time, and other characteristics. This
information is dutifully logged to the control system logs, and for
this work we used a dataset of all 2,592,361 tasks executed on
Mira from 2016-2019. Since both Darshan and Autoperf record
information on a task-level, analysis for both can easily integrate
information from the control system dataset.

224 Cobalt. The Mira supercomputer used the component-based
lightweight toolkit (Cobalt) as its scheduling and queuing system.
This tool allowed users to send job submissions requesting time
on Mira, and for each job, Cobalt recorded various metadata. This
included a unique job ID; submission, execution, and termination
timestamps; the number of compute nodes requested and actually
used; the location of allocated nodes; the amount of time requested
by the user for their job to run; and more. Notably, this information
is logged at a job-level, rather than at a task-level. Thus, some
additional work must be done to use Cobalt log data with the
control system, Autoperf, and Darshan logs presented above. We
used a dataset containing records for all 300,023 jobs run on Mira
from 2015-2019.

2.2.5 TrackLib. Many of the applications that ran on Mira relied
on linking to external libraries to provide necessary functionality,
profiling, debugging, or other benefits. Tracklib [5] is a tool linked
by default with all executables run on Mira which logs the set of
libraries linked to the applications run. This information is collected
at the job level, and includes the library name and version, the start
timestamp of the job, Cobalt job ID, and user/project information.
The dataset used in this work includes information on jobs submit-
ted from 2015-2019, about 158, 294 jobs in total, for a coverage of
about 52.76%.



Log-Based ldentification, Classification, and Behavior Prediction of HPC Applications

2.3 Homogeneity of User and Application
Behavior

Early user-level (Figure 1a) and job-level (Figure 1b) analysis for this
work revealed that both users and applications utilizing Mira exhibit
highly repetitive patterns. For example, the top 30 applications
consumed nearly 70% of the machine time (e.g., core-hours), and
the 30 most-active users consumed about 65% of the machine time.
This patterned behavior allows for the categorization of jobs in a
small number of groups at the time of submission or when the job
is completed. As part of this work, we set out to find fingerprint
representations for jobs using information at different stages, which
may be usable for application verification to detect unapproved
applications, and even predicting runtimes when a job is submitted,
for smarter scheduling.

_3ep_3e2 3e2 3e2 2¢2 2€2|

2

2 v o
S

w

= 1ex 1e3 9e2

e

15 20
Top-n Users by Number of Jobs Run

N

Cumulative Core-Hour Used [%]

-
2

(a) Cumulative machine time used by top 30 users.

2

T e 22 I
2e2
ey 262 262
ey 2e2 322 =5 T AL -

2 v oo N
S 3

72

HWHHHHH e

15 20 25
Top-n Applications by Number of jobs Run

w

SN

Cumulative Core-Hour Used [%]

(b) Cumulative machine time used by top 30 applications.

Figure 1: Machine time consumption of top applications and
users. The number on the top of each bar denotes the num-
ber of jobs in the statistic.

3 METHODS AND RESULTS

In this work, we explored the use of log-based analysis for three
different cases, broken into §3.1 on Post-Runtime Identification and
Verification, §3.2 for Pre-Runtime Elapsed Time Prediction, and §3.3
regarding Classification.

3.1 Application Identification

We developed a task representation approach for Mira using 7 engi-
neered features in [12], designed to capture "file I/O, computation,
communication, and main memory access." These 7 features were
able to achieve a testing accuracy of about 99.5% when identifying
applications; however, all 7 features also rely on logs, and thus have
limitations such as: (1) logging introduces overhead to the appli-
cation, (2) logging can be disabled by users, and (3) applications
must be compiled and linked using a specifically designed compiler.
Here, we attempt to replicate these results using 12 lightweight
hardware performance counters available on Blue Gene

Q systems [15], which require much less overhead to collect. Since

HPCSYSPROS’20, November 13, 2020, Atlanta, GA

these 12 specific hardware performance counters are already col-
lected by Autoperf, we can conduct analysis on the same set of jobs
used in [12] to directly compare the results. However, Autoperf is
not required to collect these counters: they are implemented at the
hardware level and can be accessed by a number of lightweight
monitoring/logging tools and libraries, or even by the running
application directly.

We used the following hardware performance counters in our
analysis, collected on the "average" routine in Autoperf:

e PEVT_LSU_COMMIT_LD_MISSES: Counts the number of load
commands which completed but missed the L1 cache.

e PEVT_LSU_COMMIT_CACHEABLE_LDS: Counts the number of
load commands which hit the L1 cache.

e PEVT_L1P_BAS_MISS: Counts the number of times the L1P
cache was missed.

e PEVT_INST_XU_ALL: Counts the total number of instructions
run on the execution unit.

e PEVT_INST_QFPU_ALL: Counts the total number of instruc-
tions run on the auxiliary execution unit.

e PEVT_INST_QFPU_FPGRP1: Counts the floating point opera-

tions.

PEVT_L2_HITS: Counts the total number of L2 cache hits.

PEVT_L2_MISSES: Counts the total number of L2 cache misses.

PEVT_L2_FETCH_LINE: Counts the number of L2 fetches.

PEVT_L2_STORE_LINE: Counts the number of L2 stores.

PEVT_NW_USER_PP_SENT: Counts the number of 32-byte user

point-to-point chunks sent, including packets originating or

passing through the current node.

e PEVT_NW_USER_PP_RECV: Counts the number of 32-byte user
point-to-point chunks received on the current node.

While there are numerous (200+) other hardware performance
counters collected by the system, we choose to use these for our
analysis as Autoperf provides a large extant dataset suitable for our
purposes. In order to directly compare our results to Liu et al.’s [12],
we limit our analysis to jobs run in 2018.

We first create a T-distributed stochastic neighbor embedding
(t-SNE) [14] in order to visualize this 12-dimensional data in a
two-dimensional format. We use a perplexity of 30 and 1000 itera-
tions, color-encoding the top 20 core-hour consuming executables
and grouping the rest as an "other" category, resulting in the fig-
ure shown in Figure 2b on the right, with t-SNE representation
from [12] included in Figure 2a on the left for comparison. While
the clustering is clearly different in the two figures, this is to be
expected because t-SNE has a non-convex objective function. For
our purposes, it is encouraging that the t-SNE exhibits clustering
behavior which aligns with the color-encoded executable names.

Next, we built and trained an extreme gradient boosting machine-
learning model, attempting to accurately determine an application’s
executable name based solely on the hardware performance coun-
ters collected during a job. XGBoost (XGB) [3] is a powerful high-
performance gradient boosting framework (i.e. a machine learning
tool well-suited for regression and classification problems), which
we used both for its own merits and to compare 1-to-1 with Liu et
al’s 7-feature model.

We again used data from 2018 (127, 585 jobs in total) labeling
them with either their executable name for the top 20 core-hour



HPCSYSPROS’20, November 13, 2020, Atlanta, GA

Ryan D. Lewis, Zhengchun Liu, Rajkumar Kettimuthu, Michael E. Papka

(a) t-SNE generated using engineered features [12]

(b) t-SNE generated using hardware performance counters.

Figure 2: Two-dimensional t-SNE embedding of task representation. Dots (tasks) with the same color share the same executable

name. Note that colors do not match across the 2 subfigures.

consuming executables, or ’other’. We normalized the values by
dividing each hardware performance counter by the elapsed time
of the application, so that all variables would have the same scale
across different applications. This mitigates the impact of a job’s
runtime on the scale of the hardware performance counter values.
We also dropped logs that had invalid or missing data, but none
were included in this particular subset of the dataset. Finally, we
performed a 70/30 train-test split on our dataset.

After performing a 5-fold cross-validation on the training dataset
with a max-depth of 10, we found a testing accuracy of 99.1%, with
a precision score of 96.7% and a recall score of 96.3%. While very
slightly (~ 0.4%) less accurate than the engineered features from
Autoperf used by Liu et al. [12], this suggests that hardware per-
formance counters can be used to accurately distinguish between
different executables.

3.2 Run time Prediction

An estimated runtime is provided by the user when the job is sub-
mitted to the scheduler. This estimation is one of the key decision
factors used for resource allocation. More accurate estimates can
enable more efficient resource allocation and less job slowdown.
However, this user estimation is known to be unreliable and largely
overestimated [1]. There is much research into more accurate run-
time prediction using various information available at the time of
submission [7, 16, 18]. However, the fact that the information avail-
able at the time of submission is very limited makes the prediction
task very difficult. Resource allocation based on an underestimated
prediction risks causing a job to be killed by the resource manager
before it is completed. As presented previously in §2.3, applications

run at leadership computing facilities are highly repetitive, making
it easier to predict resource requirements at the time the job is run.

We evaluated the effectiveness of runtime prediction, i.e., using
information available only before a queued job is run to predict
how long the application will run. This has potential utility for job
scheduling applications and application designers. To accomplish
this task, we prepared our features and trained an XGBoost regres-
sion model as follows. We began by encoding all of the categorical
features (e.g., username, project, executable name, hour of the day,
etc.) available to us at the time of job submission in the Cobalt
dataset using a one-of-K scheme (sometimes referred to as one-hot
encoding). Using data from 2016, we performed an 80/20 split, using
the first 9.6 months of data for model training and the remaining 2.4
months to evaluate. We filtered out jobs that exited with non-zero
exit codes, i.e., failed jobs, giving a total dataset size of 39,222 jobs.

Because only a limited amount of information is available when
a job is queued, accurate prediction is challenging. One of the key
problems with using predicted runtime (versus a user’s wall time
estimation) for scheduling is that if the prediction is underestimated,
the job will be killed by the scheduler, wasting core-hours and the
user’s machine time. This is obviously highly undesirable.

One way to mitigate this problem is to add a fixed grace period
to the prediction, which reduces the possibility of underestimation,
but can increase the amount of time that is overestimated, leading
to inefficient scheduling. In Table 1, we evaluate the trade-off of
adding a fixed time and the number of jobs that may be potentially
started earlier using our predicted runtime to replace the user pro-
vided wall time. For each margin time (adding a certain number of
minutes to our predicted runtime), we show how many jobs were



Log-Based ldentification, Classification, and Behavior Prediction of HPC Applications

underestimated (i.e. predicted time + margin time > actual runtime)
and how many jobs benefited from the prediction (i.e., predicted
time + margin time < wall time).

Table 1: Practical Runtime Prediction error analysis, testing
sample size is 7,844 jobs.

Margin Time (min) | Underestimated Jobs | Beneficial Jobs

10 2,160 5,252

30 1,110 2,762

60 558 1,620

90 334 1,175

180 117 348
360 5 130
720 0 3

Given the limited amount of information provided by the job
scheduler, we next incorporated the Tracklib [5] dataset to deter-
mine whether its inclusion could measurably improve our model’s
accuracy, as it can serve as a more reliable identifier for applications
than the executable name. We used a similar methodology to the
one used above, this time adding a one-hot encoding of each library
included in the Tracklib dataset, joined with the Cobalt dataset.
Results of our model with the Tracklib dataset used are shown in
Table 2.

Our results show that adding features from Tracklib does mea-
surably reduce the number of jobs underestimated for most margin
times, but at the cost of slight reductions in the number of jobs
benefiting from the predicted runtime. For a margin time of 30
minutes, for instance, we see that without Tracklib 1,110 jobs are
killed prematurely ( 14.1%), while only 954 were killed prematurely
(12.2%) with Tracklib used. With the same margin time, the model
trained without Tracklib benefited 2,762 jobs (35.2%), while with
Tracklib it only benefited 2,724 ( 34.7%).

Table 2: Practical Runtime Prediction error analysis with
Tracklib, testing sample size is 7,844 jobs.

Margin time (min) | Underestimated Jobs | Beneficial Jobs

10 2,062 6,810

30 954 2,724

60 468 1,489
90 317 1,121

180 95 355

360 11 101

720 1 38

1000 0 6

3.3 Resource-intensiveness Classification

Finally, we investigated how effective hardware performance coun-
ters are in classifying application runs based on different resource
consumption patterns. To accomplish this, we labeled our sam-
ples using fractions of runtime spent on file I/O, computation, and
MPI communication; calculated using counters from Darshan and
Autoperf logs based on our prior work [12].

HPCSYSPROS’20, November 13, 2020, Atlanta, GA

We defined an application as either file I/O-, computation-, or
MPI communication-intensive by looking at the ratio of time spent
by an application on each category relative to that application’s
total runtime. For our investigation, we used the same hardware
performance counters described in subsection 3.1, taken from the
Autoperf dataset, as the training features for an XGBoost classifica-
tion model. We synthesized a dataset of jobs from 2018 for which
both Autoperf and Darshan records were available, some 9,891 jobs
in total. Of these, 7,683 are computation intensive, 1,625 are MPI
intensive, and 190 are file I/O intensive, with 393 being not intensive
in any of the 3 categories.

Using an 80/20 train-test split, we are able to achieve a testing ac-
curacy of 96.5% in correctly identifying the resource-intensiveness
of a given job using hardware performance counter information,
with a recall score of 88.7% and a precision score of 92.0%. A graph
of feature importance for our model is shown in Figure 4.

3.4 Results Discussion

In considering our results, we came away with two important take-
aways. First, that hardware performance counters may be a suitable
substitute for heavier performance and instrumentation logging,
without the measurable overhead that such instrumentation and
logging tools require. Hardware performance counters effectively
require no additional time or resource usage, and, as we have shown,
can serve as a substitute for full-on logging in applications such
as verification and resource-intensiveness classification, with only
slight losses in accuracy.

Second, that application run time is difficult to predict. This is
largely due to the lack of identifying features available before the
job has run. While incorporating additional features, such as those
provided by Tracklib, can improve our model’s ability to predict, and
pulling from more datasets may further improve this performance,
perfect (or even acceptable) predictive accuracy seems untenable
with this current approach.

The ability to accurately identify and classify HPC applications
by their behavior and usage characteristics has utility in Leadership
Facilities’ security and oversight, potentially allowing auditors to
independently verify that applications actually run on compute
resources align with the expected usage of the corresponding al-
location, and that allocations are not being misused. Application
characterization allows scientific users to better understand and op-
timize their applications for the resources they are using, as well as
enabling Leadership Facilities to understand what aspects of their
resources are most important to today’s scientific HPC applications.
Better application runtime estimation could lead to more efficient
job scheduling and resource allocation.

4 RELATED WORK

Leadership supercomputers rely on a number of advanced com-
puting technologies, from high-performance storage systems to
high-speed networks and dedicated data transfer nodes. Many of
these technologies produce logs, and so quite a bit of log analysis
and research has been done already in leadership computing con-
texts to characterize performance and user behavior [4, 8-11, 13, 17].
An adjacent example to this work is Chunduri et al’s. [4] charac-
terizing of MPI usage on Mira, using Autoperf to gain insights for



HPCSYSPROS’20, November 13, 2020, Atlanta, GA Ryan D. Lewis, Zhengchun Liu, Rajkumar Kettimuthu, Michael E. Papka

® without Tracklib 7000 ® without Tracklib
® With Tracklib ® With Tracklib

2000
6000
5000
4000

1000
3000
2000

500
Hm .

1em 3em 6em 90 1em 3em 6em 90

o Ill ——
m 180m 360m 720m 1000m

m 18em  36em  72em  10@em
Margin Time Margin Time

-
w
)
S)

Underestimated Jobs
Beneficial Jobs

®

(a) Margin Times vs. Underestimated Jobs. (b) Margin Times vs. Beneficial Jobs.

Figure 3: Margin Times vs. Underestimated Jobs (left) and Beneficial Jobs (right) for Runtime Prediction, with and without
Tracklib.

PEVT_NW_USER_PP_RECV
PEVT_L2_FETCH_LINE
PEVT_INST_QFPU_FPGRP1
PEVT_LSU_COMMIT_LD_MISSES

PEVT_INST_QFPU_ALL

@
S PEVT_LSU_COMMIT_CACHEABLE_LDS
+
it PEVT_L2_HITS
L
PEVT_NW_USER_PP_SENT
PEVT_L1P_BAS_MISS
PEVT_INST_XU_ALL
PEVT L2 STORE_LINE
PEVT_L2_MISSES
4] 6.05 0.1 8.15 0.2
Importance
Figure 4: Importance of features used in resource-intensiveness classification.
the benefit of MPI users, network hardware developers, and the computing facility. Gainaru et al’s [6] analysis of the effects of in-
facilities’ teams. Other examples include Lim et al’s [8] compre- terference on application file I/O bandwidth found that a significant
hensive insights on user behavior from multiple science domains percentage of the computing capacity of large-scale platforms is

through metadata analysis of a petascale file system at a leadership



Log-Based ldentification, Classification, and Behavior Prediction of HPC Applications

wasted because of interference incurred by multiple applications
that access a shared parallel file system concurrently [6].

Previous work exploring application runtime prediction includes
Tsafrir et al’s [18] efforts to use system-generated runtime predic-
tions for backfilling, Guo et al’s [7] efforts to predict and warn users
of runtime underestimation, and Naghshnejad and Singhal’s [16]
work on predicting HPC application runtime in cloud contexts.

5 CONCLUSIONS AND FUTURE WORK

In this work, we built on previous efforts to characterize HPC appli-
cations based on performance log mining and analysis; evaluated
the utility of integrating the Tracklib log source for run-time pre-
diction; and determined the effectiveness of using hardware perfor-
mance counters for minimal-overhead application characterization,
classification, and identification.

Future work includes investigating further improvements or al-
ternative approaches to runtime estimation, as well as exploring
additional applications of log-based and hardware performance
counter-based analysis and insights. One application of particular
interest to the authors is task representation/classification of cloud
computing pipelines, where a pipeline might be optimized to take
advantage of different cloud hardware based on analysis of previous
runs. Additional log sources, such as power usage and intercon-
nect performance, can also be incorporated to improve results and
provide new insights on application usage and behavior.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, under contract number DE-AC02-
06CH11357. The datasets used in this research were generated from
resources of the Argonne Leadership Computing Facility, which is
a DOE Office of Science User Facility supported under Contract DE-
AC02-06CH11357. We thank Doug Waldron and Sudheer Chunduri,
both from the Argonne Leadership Computing Facility, for provid-
ing dataset descriptions and information. Finally, we thank Laura
Wolf of the Argonne Leadership Computing Facility for reviewing
the work prior to submission.

REFERENCES

[1] Cynthia Bailey Lee, Yael Schwartzman, Jennifer Hardy, and Allan Snavely. 2005.
Are User Runtime Estimates Inherently Inaccurate?. In Job Scheduling Strategies
for Parallel Processing, Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 253-263.

[2] Philip Carns. 2014. Darshan. In High Performance Parallel I/O. Chapman and
Hall/CRC, 351-358.

[3] Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
arXiv preprint arXiv:1603.02754 (2016).

[4] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and Kalyan Ku-
maran. 2018. Characterization of MPI Usage on a Production Supercom-
puter. In International Conference for High Performance Computing, Networking,
Storage, and Analysis. IEEE Press, Piscataway, NJ, USA, Article 30, 15 pages.
http://dl.acm.org/citation.cfm?id=3291656.3291696

[5] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and Kalyan Kumaran.
2018. Characterization of MPI usage on a production supercomputer. In SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 386-400.

[6] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir. 2015.
Scheduling the I/O of HPC Applications Under Congestion. In 2015 IEEE In-
ternational Parallel and Distributed Processing Symposium. 1013-1022. https:
//doi.org/10.1109/IPDPS.2015.116

[7] Jian Guo, Akihiro Nomura, Ryan Barton, Haoyu Zhang, and Satoshi Matsuoka.
2018. Machine learning predictions for underestimation of job runtime on HPC

HPCSYSPROS’20, November 13, 2020, Atlanta, GA

system. In Asian Conference on Supercomputing Frontiers. Springer, Cham, 179-
198.

[8] Seung-Hwan Lim, Hyogi Sim, Raghul Gunasekaran, and Sudharshan S. Vazhkudai.
2017. Scientific User Behavior and Data-sharing Trends in a Petascale File
System. In International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, New York, NY, USA, Article 46, 12 pages. https:
//doi.org/10.1145/3126908.3126924

[9] Yuanlai Liu, Zhengchun Liu, Rajkumar Kettimuthu, Nageswara Rao, Zizhong
Chen, and Ian Foster. 2019. Data Transfer between Scientific Facilities — Bot-
tleneck Analysis, Insights and Optimizations. In 2019 19th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID). 122-131.
https://doi.org/10.1109/CCGRID.2019.00023

[10] Zhengchun Liu, Rajkumar Kettimuthu, Ian Foster, and Yuanlai Liu. 2018. A

comprehensive study of wide area data movement at a scientific computing

facility. In 38th IEEE International Conference on Distributed Computing Systems.

IEEE, 8.

Zhengchun Liu, Rajkumar Kettimuthu, Ian Foster, and Nageswara S. V. Rao.

2018. Cross-geography Scientific Data Transferring Trends and Behavior. In 27th

International Symposium on High-Performance Parallel and Distributed Computing.

ACM, New York, NY, USA, 267-278. https://doi.org/10.1145/3208040.3208053

Zhengchun Liu, Ryan Lewis, Rajkumar Kettimuthu, Kevin Harms, Philip Carns,

Nageswara Rao, Jan Foster, and Michael E. Papka. 2020. Characterization and

Identification of HPC Applications at Leadership Computing Facility. In Pro-

ceedings of the 34th ACM International Conference on Supercomputing (ICS °20).

Association for Computing Machinery, New York, NY, USA, Article 29, 12 pages.

https://doi.org/10.1145/3392717.3392774

Glenn K. Lockwood, Shane Snyder, Teng Wang, Suren Byna, Philip Carns, and

Nicholas J. Wright. 2018. A Year in the Life of a Parallel File System. In In-

ternational Conference for High Performance Computing, Networking, Storage,

and Analysis. IEEE Press, Piscataway, NJ, USA, Article 74, 13 pages. http:

//dLacm.org/citation.cfm?id=3291656.3291755

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

Journal of machine learning research 9, Nov (2008), 2579-2605.

Heike McCraw, Dan Terpstra, Jack Dongarra, Kris Davis, and Roy Musselman.

2013. Beyond the CPU: hardware performance counter monitoring on blue

gene/q. In International Supercomputing Conference. Springer, 213-225.

[16] M. Naghshnejad and M. Singhal. 2018. Adaptive Online Runtime Prediction to
Improve HPC Applications Latency in Cloud. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). 762-769.

[17] Tirthak Patel, Suren Byna, Glenn K. Lockwood, and Devesh Tiwari. 2019. Re-

visiting I/O Behavior in Large-scale Storage Systems: The Expected and the

Unexpected. In International Conference for High Performance Computing, Net-

working, Storage and Analysis. ACM, New York, NY, USA, Article 65, 13 pages.

https://doi.org/10.1145/3295500.3356183

Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. 2007. Backfilling using system-

generated predictions rather than user runtime estimates. IEEE Transactions on

Parallel and Distributed Systems 18, 6 (2007), 789-803.

[11

[12

=
&

[14

[15

[18

GOVERNMENT LICENSE

The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (“Argonne”). Ar-
gonne, a U.S. Department of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357. The U.S. Gov-
ernment retains for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said article to repro-
duce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Gov-
ernment. The Department of Energy will provide public access to
these results of federally sponsored research in accordance with the
DOE Public Access Plan. http://energy.gov/downloads/doe-public-
access-plan.


http://dl.acm.org/citation.cfm?id=3291656.3291696
https://doi.org/10.1109/IPDPS.2015.116
https://doi.org/10.1109/IPDPS.2015.116
https://doi.org/10.1145/3126908.3126924
https://doi.org/10.1145/3126908.3126924
https://doi.org/10.1109/CCGRID.2019.00023
https://doi.org/10.1145/3208040.3208053
https://doi.org/10.1145/3392717.3392774
http://dl.acm.org/citation.cfm?id=3291656.3291755
http://dl.acm.org/citation.cfm?id=3291656.3291755
https://doi.org/10.1145/3295500.3356183

	Abstract
	1 Introduction
	2 Background
	2.1 The Mira Supercomputer
	2.2 Datasets and Logs
	2.3 Homogeneity of User and Application Behavior

	3 Methods and Results
	3.1 Application Identification
	3.2 Run time Prediction
	3.3 Resource-intensiveness Classification
	3.4 Results Discussion

	4 Related Work
	5 Conclusions and Future Work
	Acknowledgments
	References

