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Why streaming tomography? 

How (much) can DL help to accelerate?



Background (Tomographic data acquisition and reconstruction pipeline)

Error Correction etc.
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Motivation  of Streaming Tomography

Error Correction early in experiments; 

Experiment Steering, e.g., early stoping; 

Detection of features in hierarchical structures; 

Change data acquisition to capture dynamic features;  

Adjust experimental parameters on the fly; 

Enables smart and efficient experimentation;

Real-time feedback to enable:
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Motivation (Streaming tomography image quality, with and without enhancement)

with data up to 462s (480 
projections), before enhancement; 

with the same data, after 
enhancement;

with data up to 1433s (1504 
projections), before enhancement.

Three times faster turnaround time for domain scientists. A.K.A., three times increased 
throughput for the light source and computing facility.  

Important as enablers of experiment steering, where quick turnaround is required.



System Design (realtime process )

Tomographic reconstruction on a streaming experimental data with TomoGAN.  are 
separate threads. Simultaneous Iterative Reconstruction Technique (SIRT) is used here. 

t0, t1, …, tn

TraceX*

*  T. Bicer. Advanced structural and chemical imaging. 2017 
** Z. Liu. TomoGAN. arXiv:1902.07582

TomoGAN**

Window size ( ): number of projections you wait for an (additive) iterative reconstruction; 
Iteration ( ): the number of SIRT iterations you perform for each window; the more, the 
longer turnaround time; 
Rotation ( ): data acquisition rotations, i.e., the number of . The more, the longer 
experiment time and more resource used. We minimize  with minimum 
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TomoGAN
An image-denoising model based on generative adversarial networks originally developed 
for low-dose (less projections or shorted exposure time) x-ray imaging.
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In our model, the discriminator's job remains 
unchanged, but the generator is tasked not only 
with fooling (indistinguishable) the discriminator 
but also with being near the ground truth output 
in an L2 sense. 

The discriminator works as a helper to train the 
generator that we need to denoise images.
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Open at: https://github.com/ramsesproject/TomoGAN (TF, C++ using DNNL, cudnn) 
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https://github.com/ramsesproject/TomoGAN
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Experiments

Model testing/evaluation 
[Projection] Window size ( ): 16, 32, 64, 128, 256 

[Reconstruction] Iterations ( ): 1, 5, 10 

Rotations ( ): 

W
I

R [1, ⌈ 1500
w ⌉]

Model training 
We used  to train the model 128 slices (e.g., 128 images, 
each with 2560x2560 pixels) with data argumentation. 

We use SIRT with 100 iterations to generate the corresponding 128 slices (cleanest 
possible) and use them as ground truth.  

Training take 6 hours using 1 NVIDIA V100 Card

W = 32; I = 1; R = 5

So, totaling 548 cases, each 

with 128 images, for testing
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Experiments
TABLE I: Data processing time for different configurations, for Glass and Shale datasets. Refresh time is the time it takes
to generate an update. The sustained data consumption rate is measured by the number of projection processed per second.

SIRT iterations, I 1 5 10
Window size, W 16 32 64 128 256 16 32 64 128 256 16 32 64 128 256
Glass Refresh time (s) 1.5 1.6 1.8 2.4 4.0 7.5 7.9 9.7 12.9 20.4 15.4 16.4 20.1 26.4 40.8
Glass Sustained Rate (p/s) 10.7 20.8 36.9 56.0 75.1 2.1 4.1 6.7 10.6 14.7 1.0 2.0 3.2 5.2 7.3
Shale Refresh time (s) 1.1 1.1 1.2 1.6 2.7 5.3 5.4 6.7 8.8 13.5 10.6 10.5 13.6 17.8 27.3
Shale Sustained Rate (p/s) 15.2 30.2 52.9 83.0 112.8 3.1 6.0 9.8 15.5 22.2 1.5 3.1 4.8 7.7 11.0

Fig. 4: Streaming tomography image quality improvements for Glass, as measured by SSIM, averaged across all slices. The
labels in the legend are coded as follows: W is window size; C denotes conventional reconstruction and T denotes conventional
plus TomoGAN enhancement. Streaming tomography processing uses 10 iterations in each case. The red dashed horizontal
line shows the best result obtained with the conventional method and a window size of 16.

B. End-to-end Performance Evaluation

If we purely measure the image quality with SSIM, as
shown in Figure 4, then for W=16:I=10, the best SSIM
that conventional streaming tomography can achieve is 0.638.
When using TomoGAN, in contrast, the SSIM exceeds 0.638
(as shown by the horizontal red dotted line in Figure 4) after
just four rotations. However, as shown in Figure 6, the (visual)
image quality even after 11 rotations (i.e., at 169s, because
each update takes 15.4s, as shown in Table I) is poor. We
thus conclude that we cannot rely only on SSIM for image
quality measurement to estimate the end-to-end performance
improvement.

As an alternative, we use the naked eye to subjectively
evaluate image quality to estimate the end-to-end speedup
of throughput. We evaluate the image quality based on two
factors: (1) Similarity to the best possible image quality (i.e.,
compare TomoGAN denoised image with the best image from
conventional streaming tomography. The best image from
conventional streaming tomography is the one that is obtained
after processing all the projections - for example, the one on
the blue curve at 1500 projections in Figure 5.) and, (2) Clarity
of features in the image (i.e., compare TomoGAN denoised
image with the image from conventional streaming that is just

clear enough to see all features). We observe: (1) as shown
in Figure 6, the TomoGAN denoised image at 477s (i.e., the
31st update) is visually comparable with the best image (at
1433s) from conventional streaming: a speedup of about 3;
and (2) features in the image using conventional streaming
tomography are observable only at 477s whereas features in
the TomoGAN denoised image is observable at 169s (i.e., the
11th update), again a speed-up of nearly 3.

We also evaluated our method using the Shale sample.
The image quality improvement is demonstrated in Figure 7.
The Shale sample has much more high-frequency content
when compare with Glass. Although the image quality
improvement is still clear, the end-to-end speedup is not as
good as it for Glass sample. The end-to-end speed up is 2x
(as opposed to 3x for Glass) by naked eye evaluation.

C. Overhead analysis

TomoGAN takes about 290ms to process one 2560⇥2560
pixel image in our experiments on one NVIDIA Tesla V100
GPU card. TomoGAN and the tomographic reconstruction
algorithm can run in parallel and TomoGAN takes signifi-
cantly less time than the reconstruction algorithm. Thus, the
tomographic reconstruction algorithm and TomoGAN can be
effectively pipelined such that the total overhead of TomoGAN

Data processing time for different configurations, for Glass and Shale datasets.  

Refresh time is the time it takes to generate an update (A.K.A. turnaround time).  

The sustained data consumption rate is measured by the number of projection 
processed per second.
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Experiments (TomoGAN overhead)

TomoGAN inference takes about 290ms to process one image with  
pixels in our experiments using one NVIDIA Tesla V100 GPU card.  

SIRT runs on CPU, so TomoGAN and reconstruction algorithm can run in parallel 
and TomoGAN takes significantly less time than the reconstruction algorithm. Thus, 
no overhead but a delay for the first rotation output.  

But, without a GPU… 

It takes about 1050ms on KNL 7210 even with a C++ based implementation 
(1600ms using TF) and it cannot run in parallel with SIRT because of contention. 

2560 × 2560



Experiments (SSIM comparison)
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Experiments (SSIM is not enough)
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Experiments (comparison by naked eyes)
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Experiments
Conventional (SIRT) DL Enhanced 

3D Vol => VTK => Catalyst/pvserver => pv CLient



Conclusion

DL can significantly improve tomographic images with streaming data, model 

trained with one case works well for all others; 

In streaming case, it accelerates the experiment and improves light-source 

facility throughput (to domain scientist). 

It also saves network and computing resource compare without it in streaming 

tomography (to computer scientist :-). 

As we reported in our TomoGAN paper, it saves experiment time (less 

projections or shorter exposure time) and computing time (lightweight 

analytical CT + TomoGAN) even if you do not do streaming tomography 

reconstruction.
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Tuesday, November 19, 1:15 pm 
SC Theatre adjacent to the SCinet booth in Exhibits


