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About me and my work

[] Assistant Computer Scientist at Data Science and Learning Division

] High Performance Wide Area Data Transfer, logs mining, characteristic and optimization

] Data science and machine learning for computing system, e.g., performance modeling,
bottleneck detection and reasoning.

(] Al for Science, e.g., X-ray at APS, Climate Simulation, Accelerator at APS etc.

[ Looking for collaboration on applying Al for more other domains.



Advancing X-ray Tomography using Al
(TomoGAN)



Motivation

(1) lower X-ray dosage for sensitive sample like bio-sample;
(2) faster experiment to capture dynamic features, like in fast chemical reaction processes;
(3) smaller dataset and less computation for [near] realtime tomography imaging.
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On the left, the results of conventional reconstruction, which are highly Model is trained with one shale sample imaged at APS and tested
noisy. On the right, those same results after denoising with TomoGAN. with another shale sample imaged at Swiss Light Source (SLS).



Method

A generative adversarial network (GAN) is a class of machine learning systems in which two neural networks,
generator (G) and discriminator (D), contest with each other in a game (in the sense of game theory, often but not

always in the form of a zero-sum game).
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In our model, the discriminator's job remains
unchanged, but the generator is tasked not only with
fooling (indistinguishable) the discriminator but also
with being near the ground truth output in an L2

Sense.

The discriminator works as a helper to train the
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Experiments

Datasets

Three foam simulation datasets, each with 1024 slices
Two shale samples imaged at both APS and SLS, totals four datasets and each with 2048 slices.

Label projection reconstruction Facility Sample Scan AXis
tomo_00001 (1501, 1792, 2048) (1792, 2048, 2048) APS B1 hornby 1024
tomo_00002 (1501, 1792, 2048) (1792, 2048, 2048) APS N1 blakely 1029
tomo_00003 (1441, 2048, 2048) (2048, 2048, 2048) SLS B1 hornby 1011
tomo_00004 (1441, 2048, 2048) (2048, 2048, 2048) SLS N1 blakely 1048

Low dose cases

Sparse views
Subsample the original, (i.e., normal dose) projections to 1/2, 1/4, 1/8 and 1/16 for experiments and model evaluation.

Short exposure time.
For simulation datasets, we simulate x-ray projections with different photon intensities to simulate different exposure times
For experimental shale datasets, we used added noise using a Poisson distribution to simulate different exposure times.



Results - Sparse views
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Conventional vs. TomoGAN-enhanced reconstructions of simulated (left) data and shale (right), subsampled to (512, 256, 128, 64)
projections. In each group of three elements, the two images show conventional and TomoGAN reconstructions, while the plot shows
conventional, TomoGAN, and ground truth values for the 200 pixels on the horizontal line in the top left image.




Computational superiority

The filtered back projection (FBP) algorithm takes 40 ms to reconstruct one image (using TomoPy) and TomoGAN takes
30 ms to enhance the reconstruction, totals 70 ms per image.

In contrast, the SIRT based solution (using TomoPy) takes 550 ms (400 iterations), i.e., 8x faster. Times are measured
using one Tesla V100 graphic card.

Moreover, iterative reconstruction does not provide better image quality than does our method.

SIRT + total variation postprocess. Filtered back projection + TomoGAN post-process.



TomoGAN - Tomography at Edge

[ ] Both Tomography and DL are computation intensive but both GPU typically helps a lot;
IZA GPU friendly tomography for a rough (noisy) results plus DL based enhancement;

[] Fusion of analytical (human knowledge) and deep learning (data driven).

GridRec, FBP
o _ _ TomoGAN
Projections +—— (Lightweight) ———» (cudnn)
CUDA

NVIDIA Jetson TX2, ~980ms per slice

Control, Adjustment, Decision

" $300, maximum 15 watts
With Viktor Nikitin et al.



Make it usable Plug and Play Abeykoon et al.
Edge TPU 14

Hack and Play
open source implementation, better to have a GPU for training
Git clone git@github.com:ramsesproject/TomoGAN.git

python ./train.py -1d noise-img.hdf5 -nd clean-img.hdfb

python ./infer.py -1d ld-prod.hdfb

X as a Service
DLHub

Data and Learning Hub for Science

B. Blaiszik. arXiv:1811.11213

from dlhub sdk.client import DLHubClient
dlhub = DLHubClient ()

~700ms to denoise a 1k x T¢ iImage

model dlhub.get id by name ("tomoGAN") oython: Tensorflow and Keras based:

data h5py Fi1le("tomo 1ld.hdfb5", “r")["1ld j_mg" ] C++ : DNNL(MKL-DNN) based, good for CPU based e.g., KNL;
N o C++, CUDA: cuDNN and cuda based, good for NVIDIA GPU;

pred dl.run (model, data) Pytorch: upon request




Make it usable - Continue Details
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Deep Learning Accelerated Light Source Experiments
An Extended use of TomoGAN



Motivation

It enables:

< Error Correction early in experiments;

<~ Experiment Steering, e.g., early stoping;

- Detection of features in hierarchical structures;

-~ Change data acquisition to capture dynamic features;

< Adjust experimental parameters on the fly;



Error Correction etc.
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with data up to 462s (480 with the same data, after with data up to 1433s (1504
projections), before enhancement; enhancement; projections), before enhancement.

Three times faster turnaround time for domain scientists. A.K.A., three times increased throughput
for the light source and computing facility.

Important as enablers of experiment steering, where quick turnaround is required.

With Tekin Bicer et al.



] Best possible as ground truth to train TomoGAN
[J With TomoGAN, reconstruction converts faster

[J TomoGAN captured features, thus it works for

SSIM

any level of noisy although denoised image

quality varies.

=—a (Conventional e—e Proposed Time
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With Tekin Bicer et al. Timeline, time(s) since experiment start




TomoGAN - Extended use case 2 - Prior in ADMM

Joint ptycho-tomography is a powerful framework to recover the refractive properties of the 3D object
while relaxing existing requirements for lateral probe overlap.

O There is a ptychography process to reconstruct projections needed for tomography.
0O Less datapoint results in noisier ptychography reconstruction and worse tomography images.
0 Alternating direction method of multipliers (ADMM) is used as a generic reconstruction framework to

efficiently solve the joint E !;i n i ;i " * '1 i

ptycho-tomography problem. L e I A :r

0 TomoGAN here was used as a learnt g z i ;L ! H s E 'J s
prior in the ADMM loop to iteratively ; E;g H ! ! i “ﬁ l 2 ! i
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Original ADMM w/0 using TomoGAN TomoGAN as learned prior in ADMM

One of images inTraining Dataset

With Selin Aslan et al. One of images in Testing dataset



TomoGAN - Extended use case 3 - 3M with alignment issue

TomoGAN enhanced (Model Output

[ (X,y) pair comes from two experiments;

[] Impossible to perfectly aligned, like rotated a bit;

L1 Not a big problem for scientists but a big problem to 2,

00 Tune the weight of £, and ¢, ;, works.

se’ T vgg

Best attempt (4 hours) With Myles Brostrom et al.



Conditional Super Resolution for Weather Research and
Forecasting(WRF) Downscaling




Motivation

O WRF model can simulate much more accurately than coarse resolution model

O High resolution simulation results provide important input for other research fields, such as hydrological/urban modeling and risk
assessment for critical infrastructures.

O However, simulate at high resolution is computation expensive, e.g., grid spacing of 50 km take 4,000 CPU hours, 12km takes 24,000
CPU hours, while 4km take 2,000,000 CPU hours.

O So, can Deep Learning help on downscaling? i.e., simulate at coarse resolution and enhance it afterwards.

Simulation at 50 KM Simulation at 12 KM



Conditional Super Resolution for WRF downscaling

High Res. Precip.
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Conditional Super Resolution for WRF downscaling

CSR from 50 KM

Data:
(12KM, 50KM) pair, 3-hourly precipitation snapshot in one year
Jan. - Oct. for training <seasonal difference> Nov. and Dec. for testing

Training:
300 epochs
16 mini-batch size

Testing:
Nov. and Dec.
SSIM: 0.86 vs. 0.79, MSE: 0.004 vs. 0.008, Pearson: 0.96 vs. 0.89

bicubic interpolation from 50 KM



Conditional Super Resolution for WRF downscaling

Learned spatial attention
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Self-driving Accelerator Operation

Powered by:

] 1,320 power supply controls the electron beam which provides X-ray radiation
(] 20 years of monitoring every ~60s include: capacitor temperature, current, magnitude temperature, DAC, IGBT and voltage
] Currently dozens of failure annually

] It will be valuable for APS-U in its early stage or even testing stage.

JSD: 0.420

0.074

Can we: 0.06-

0.05+
[[] Detect anomaly and raise alarms? 0.04-

—— Ref. Run

] Predict power supply failure before the weekly maintenance? 0.03

I
0.02- |
(] Learn from expert, (adapt configuration) fix (some) potential power supply issue? 0.01- V\/\ m

0.00] 2

Plan and progress:
M Auto-encoder for anomaly detection, to understand if recorded data can (fully) characterize power supply status

M Conventional way for anomaly detection, statistical distance between known normal and realtime monitoring. Jensen-
Shannon Divergence (JSD) works fine using 12 hours monitoring.
] Machine learning prediction for weekly maintenance intensive care.

[] Learning from expert for auto-tuning With Michael Borland, Yipeng Sun et al.



Automating HPC Taxonomy at LCFs for Fine Allocation

Motivation

(] LCFs collected many logs/datasets for different purpose.

[] Verify (fingerprinting) if the users are using the system in an appropriate way (actual
application runs closely resembles the proposed usage).

[[] Categorize applications, for example as I/0 intensive, communication intensive,
computing intensive, or memory bound.

] Such categories can be used to target applications for optimization like *-aware

schedule and allocation, power-cap setting, particularly if they are to be executed

repeatedly (true for LCFs). 100§

=—® Filel/O
30 B=—E Comm.

(ccdf)

[[]J We break down runtime to

create labels (i.g., categorize), we

then use hardware counters as 60

feature to train ML classifier.

] We also propose fingerprint

N
o

using information at the time of

% of jobs with fraction > x
I
o

submission for querying and

o
o

| o 0.2 0.4 0.6 0.8 1.0
identification. Fraction of run time

Z. Liu et al. Characterization and Identification of HPC Applications at Leadership Computing Facility. ICS’2020






