
AI for Science: Use-Cases and Lessons

Zhengchun Liu

Assistant Computer Scientist at Data Science and Learning Division

April 15th, 2020

CELS Coffee Talk

About me and my work

Assistant Computer Scientist at Data Science and Learning Division

High Performance Wide Area Data Transfer, logs mining, characteristic and optimization

Data science and machine learning for computing system, e.g., performance modeling,

bottleneck detection and reasoning.

AI for Science, e.g., X-ray at APS, Climate Simulation, Accelerator at APS etc.

Looking for collaboration on applying AI for more other domains.

Advancing X-ray Tomography using AI
(TomoGAN)

Motivation

On the left, the results of conventional reconstruction, which are highly
noisy. On the right, those same results after denoising with TomoGAN.

Model is trained with one shale sample imaged at APS and tested
with another shale sample imaged at Swiss Light Source (SLS).

(1) lower X-ray dosage for sensitive sample like bio-sample;

(2) faster experiment to capture dynamic features, like in fast chemical reaction processes;

(3) smaller dataset and less computation for [near] realtime tomography imaging.

Method

128 128

128

64 64

32 32

6464256

128 32 32 m

32 3264 16 1

Copy

Copy

Copy

8
Adjacent d

noisy images
Enhanced

image
Down sampling Up sampling

1024 x 1024
1024 x 1024

10
24

2

10
24

2

51
22

51
22

51
22

51
22

51
22

51
22

25
62

25
62

25
62

25
62

25
62

25
62

12
82

128

12
82

10
24

2

10
24

2

10
24

2

10
24

2

10
24

2

10
24

2

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
3x3

C
1x1

relu
C

1x1

tanh

2x Bilinear upsampling

2x2 Max pooling

3x3 Conv. + ReLU

1x1 Convolution + ReLU

1x1 Convolution + Linear

Legend

C
3x3

relu
C

1x1

C
1x1

tanh

d

10
24

2

C
1x1

relu

In our model, the discriminator's job remains
unchanged, but the generator is tasked not only with
fooling (indistinguishable) the discriminator but also
with being near the ground truth output in an L2
sense.

The discriminator works as a helper to train the
generator that we need to denoise images.

A generative adversarial network (GAN) is a class of machine learning systems in which two neural networks,
generator (G) and discriminator (D), contest with each other in a game (in the sense of game theory, often but not
always in the form of a zero-sum game).

Our Generator Architecture

Generator

Noisy Image
adjacent slices

Pre-Trained
VGG

Denoised Image

Discriminator

Pixel-wise
L2-Norm

Wasserstein
Distance

Adversarial
Loss

Perceptual
Loss

Back-propagation and weights updating

Back-propagation and
weights updating

MSE

W
ei

gh
te

d
Av

er
ag

e

Denoiser

Experiments
Datasets

Low dose cases

Three foam simulation datasets, each with 1024 slices
Two shale samples imaged at both APS and SLS, totals four datasets and each with 2048 slices.

Label projection reconstruction Facility Sample Scan Axis
tomo_00001 (1501, 1792, 2048) (1792, 2048, 2048) APS B1 hornby 1024
tomo_00002 (1501, 1792, 2048) (1792, 2048, 2048) APS N1 blakely 1029
tomo_00003 (1441, 2048, 2048) (2048, 2048, 2048) SLS B1 hornby 1011
tomo_00004 (1441, 2048, 2048) (2048, 2048, 2048) SLS N1 blakely 1048

Sparse views
 Subsample the original, (i.e., normal dose) projections to 1/2, 1/4, 1/8 and 1/16 for experiments and model evaluation.

Short exposure time.
 For simulation datasets, we simulate x-ray projections with different photon intensities to simulate different exposure times

 For experimental shale datasets, we used added noise using a Poisson distribution to simulate different exposure times.

Results - Sparse views

Conventional. TomoGAN. Conventional. TomoGAN.

512 projections 256 projections

Conventional. TomoGAN. Conventional. TomoGAN.

128 projections 64 projections

Figure 12. Conventional vs. TomoGAN-enhanced reconstructions of experimental dataset DSB1
SLS, subsampled to (512, 256,

128, 64) projections. Figure elements are as in Figure 9.

26/13

Conventional. TomoGAN. Conventional. TomoGAN.

512 projections 256 projections

;
Conventional. TomoGAN. Conventional. TomoGAN.

128 projections 64 projections

Figure 9. Conventional vs. TomoGAN-enhanced reconstructions of simulated data, subsampled to (512, 256, 128, 64)
projections. In each group of three elements, the two images show conventional and TomoGAN reconstructions, while the plot
shows conventional, TomoGAN, and ground truth values for the 200 pixels on the horizontal line in the top left image.

23/13

Conventional vs. TomoGAN-enhanced reconstructions of simulated (left) data and shale (right), subsampled to (512, 256, 128, 64)
projections. In each group of three elements, the two images show conventional and TomoGAN reconstructions, while the plot shows
conventional, TomoGAN, and ground truth values for the 200 pixels on the horizontal line in the top left image.

Computational superiority
The filtered back projection (FBP) algorithm takes 40 ms to reconstruct one image (using TomoPy) and TomoGAN takes
30 ms to enhance the reconstruction, totals 70 ms per image.

In contrast, the SIRT based solution (using TomoPy) takes 550 ms (400 iterations), i.e., 8x faster. Times are measured
using one Tesla V100 graphic card.

Moreover, iterative reconstruction does not provide better image quality than does our method.

SIRT + total variation postprocess. Filtered back projection + TomoGAN post-process.

Figure 16. SIRT + total variation vs. TomoGAN: an image reconstructed from 64 simulated projections.

30/13

TomoGAN - Tomography at Edge

Projections
GridRec, FBP
(Lightweight)

CUDA

TomoGAN
(cudnn)

NVIDIA Jetson TX2, ~980ms per slice

~ $300, maximum 15 watts

Control, Adjustment, Decision

Both Tomography and DL are computation intensive but both GPU typically helps a lot;

A GPU friendly tomography for a rough (noisy) results plus DL based enhancement;

Fusion of analytical (human knowledge) and deep learning (data driven).

With Viktor Nikitin et al.

Make it usable

Hack and Play

Git clone git@github.com:ramsesproject/TomoGAN.git

python ./train.py -ld noise-img.hdf5 -nd clean-img.hdf5

python ./infer.py -ld ld-prod.hdf5

open source implementation, better to have a GPU for training

Plug and Play

X as a Service

from dlhub_sdk.client import DLHubClient
dlhub = DLHubClient()

model = dlhub.get_id_by_name("tomoGAN")
data = h5py.File("tomo_ld.hdf5", “r")["ld_img"]
pred = dl.run(model, data)

DLHub
Data and Learning Hub for Science B. Blaiszik. arXiv:1811.11213

~700ms to denoise a 1k x 1k image

Edge TPU

Jetson TX2

Abeykoon et al.

python: Tensorflow and Keras based;

C++ : DNNL(MKL-DNN) based, good for CPU based e.g., KNL;

C++, CUDA: cuDNN and cuda based, good for NVIDIA GPU;

Pytorch: upon request

TPU Dev Board

TPU Accelerator

Make it usable - Continue Details

An Extended use of TomoGAN

Deep Learning Accelerated Light Source Experiments

 Error Correction early in experiments;

 Experiment Steering, e.g., early stoping;

 Detection of features in hierarchical structures;

 Change data acquisition to capture dynamic features;

 Adjust experimental parameters on the fly;

It enables:

Motivation

Error Correction etc.

TraceX* TomoGAN**

* T. Bicer. Advanced structural and chemical imaging. 2017
** Z. Liu. TomoGAN. arXiv:1902.07582

Three times faster turnaround time for domain scientists. A.K.A., three times increased throughput
for the light source and computing facility.

Important as enablers of experiment steering, where quick turnaround is required.

with data up to 462s (480
projections), before enhancement;

with the same data, after
enhancement;

with data up to 1433s (1504
projections), before enhancement.

With Tekin Bicer et al.

With Tekin Bicer et al.

0 200 400 600 800 1000 1200 1400 1600
1XPber oI X-ray SroMections acqXired, streaPed and Srocessed

0.0

0.2

0.4

0.6

0.8

1.0

66
,0

Conventional ProSosed

15 169 323 477 631 785 939 1093 1247 1401 1433
7iPeline, tiPe(s) since experiPent start

3r
op

os
ed

Co
nv

en
tio

na
l

Time

Time

Best possible as ground truth to train TomoGAN

With TomoGAN, reconstruction converts faster

TomoGAN captured features, thus it works for

any level of noisy although denoised image

quality varies.

TomoGAN - Extended use case 2 - Prior in ADMM
Joint ptycho-tomography is a powerful framework to recover the refractive properties of the 3D object
while relaxing existing requirements for lateral probe overlap.

There is a ptychography process to reconstruct projections needed for tomography.

Less datapoint results in noisier ptychography reconstruction and worse tomography images.

Alternating direction method of multipliers (ADMM) is used as a generic reconstruction framework to

efficiently solve the joint

 ptycho-tomography problem.

With Selin Aslan et al.

Original ADMM w/o using TomoGAN

One of images inTraining Dataset

TomoGAN as learned prior in ADMM

One of images in Testing dataset

TomoGAN here was used as a learnt

prior in the ADMM loop to iteratively

enhance tomography images.

TomoGAN - Extended use case 3 - 3M with alignment issue

180°, large step size, no frame avg. (45 minutes) TomoGAN enhanced (Model Output)

Best attempt (4 hours)

(X,y) pair comes from two experiments;

Impossible to perfectly aligned, like rotated a bit;

Not a big problem for scientists but a big problem to

Tune the weight of , and works.

ℓmse

ℓmse ℓvgg ℓadv

With Myles Brostrom et al.

Conditional Super Resolution for Weather Research and
Forecasting(WRF) Downscaling

Simulation at 12 KMSimulation at 50 KM

Motivation

WRF model can simulate much more accurately than coarse resolution model

High resolution simulation results provide important input for other research fields, such as hydrological/urban modeling and risk

assessment for critical infrastructures.

However, simulate at high resolution is computation expensive, e.g., grid spacing of 50 km take 4,000 CPU hours, 12km takes 24,000

CPU hours, while 4km take 2,000,000 CPU hours.

So, can Deep Learning help on downscaling? i.e., simulate at coarse resolution and enhance it afterwards.

...

Upsam
ple(TConv)

CBAM ...

Upsam
ple(TConv)

CBAM

O
utput Conv Layer

Inception Modules Inception Modules
Attention Attention64 x 128 256 x 512X2 X2

Stacked Var. High Res. Precip.

Convolutional Block Attention Module 3

Channel
Attention
Module

Spatial
Attention
Module

Convolutional Block Attention Module

Input Feature Refined Feature

Fig. 1: The overview of CBAM. The module has two sequential sub-modules:
channel and spatial. The intermediate feature map is adaptively refined through
our module (CBAM) at every convolutional block of deep networks.

2 Related Work

Network engineering. “Network engineering” has been one of the most impor-
tant vision research, because well-designed networks ensure remarkable perfor-
mance improvement in various applications. A wide range of architectures has
been proposed since the successful implementation of a large-scale CNN [19].
An intuitive and simple way of extension is to increase the depth of neural
networks [9]. Szegedy et al. [10] introduce a deep Inception network using a
multi-branch architecture where each branch is customized carefully. While a
naive increase in depth comes to saturation due to the difficulty of gradient
propagation, ResNet [5] proposes a simple identity skip-connection to ease the
optimization issues of deep networks. Based on the ResNet architecture, various
models such as WideResNet [6], Inception-ResNet [8], and ResNeXt [7] have been
developed. WideResNet [6] proposes a residual network with a larger number of
convolutional filters and reduced depth. PyramidNet [20] is a strict generalization
of WideResNet where the width of the network gradually increases. ResNeXt [7]
suggests to use grouped convolutions and shows that increasing the cardinality
leads to better classification accuracy. More recently, Huang et al. [21] propose
a new architecture, DenseNet. It iteratively concatenates the input features with
the output features, enabling each convolution block to receive raw information
from all the previous blocks. While most of recent network engineering methods
mainly target on three factors depth [19,9,10,5], width [10,22,6,8], and cardinal-
ity [7,11], we focus on the other aspect, ‘attention’, one of the curious facets of
a human visual system.

Attention mechanism. It is well known that attention plays an important
role in human perception [23,24,25]. One important property of a human visual
system is that one does not attempt to process a whole scene at once. Instead,
humans exploit a sequence of partial glimpses and selectively focus on salient
parts in order to capture visual structure better [26].

Recently, there have been several attempts [27,28] to incorporate attention
processing to improve the performance of CNNs in large-scale classification tasks.

Conditional Super Resolution for WRF downscaling

Previous Layer
Output

LeakyRelu
1x1 Convolution

LeakyRelu
3x3 Maxpooling

LeakyRelu
1x1 Convolution

LeakyRelu
1x1 Convolution

LeakyRelu
3x3 Convolution

LeakyRelu
5x5 Convolution

LeakyRelu
1x1 Convolution

channel-axis

Concatenate

Convolutional Block Attention Module 5

MaxPool

AvgPool
Channel Attention

MC

Channel Attention Module

[MaxPool, AvgPool] Spatial Attention
MS

Spatial Attention Module

Input feature F

Channel-refined
feature)¶

Shared MLP

conv
layer

Fig. 2: Diagram of each attention sub-module. As illustrated, the channel
sub-module utilizes both max-pooling outputs and average-pooling outputs with
a shared network; the spatial sub-module utilizes similar two outputs that are
pooled along the channel axis and forward them to a convolution layer.

[33] suggest to use it to learn the extent of the target object effectively and Hu et
al. [28] adopt it in their attention module to compute spatial statistics. Beyond
the previous works, we argue that max-pooling gathers another important clue
about distinctive object features to infer finer channel-wise attention. Thus, we
use both average-pooled and max-pooled features simultaneously. We empiri-
cally confirmed that exploiting both features greatly improves representation
power of networks rather than using each independently (see Sec. 4.1), showing
the effectiveness of our design choice. We describe the detailed operation below.

We first aggregate spatial information of a feature map by using both average-
pooling and max-pooling operations, generating two different spatial context de-
scriptors: Fc

avg and Fc
max, which denote average-pooled features and max-pooled

features respectively. Both descriptors are then forwarded to a shared network
to produce our channel attention map Mc ∈ RC×1×1. The shared network is
composed of multi-layer perceptron (MLP) with one hidden layer. To reduce
parameter overhead, the hidden activation size is set to RC/r×1×1, where r is
the reduction ratio. After the shared network is applied to each descriptor, we
merge the output feature vectors using element-wise summation. In short, the
channel attention is computed as:

Mc(F) = σ(MLP (AvgPool(F)) +MLP (MaxPool(F)))

= σ(W1(W0(F
c
avg)) +W1(W0(F

c
max))),

(2)

where σ denotes the sigmoid function, W0 ∈ RC/r×C , and W1 ∈ RC×C/r. Note
that the MLP weights, W0 and W1, are shared for both inputs and the ReLU
activation function is followed by W0.

Convolutional Block Attention Module 5

MaxPool

AvgPool
Channel Attention

MC

Channel Attention Module

[MaxPool, AvgPool] Spatial Attention
MS

Spatial Attention Module

Input feature F

Channel-refined
feature)¶

Shared MLP

conv
layer

Fig. 2: Diagram of each attention sub-module. As illustrated, the channel
sub-module utilizes both max-pooling outputs and average-pooling outputs with
a shared network; the spatial sub-module utilizes similar two outputs that are
pooled along the channel axis and forward them to a convolution layer.

[33] suggest to use it to learn the extent of the target object effectively and Hu et
al. [28] adopt it in their attention module to compute spatial statistics. Beyond
the previous works, we argue that max-pooling gathers another important clue
about distinctive object features to infer finer channel-wise attention. Thus, we
use both average-pooled and max-pooled features simultaneously. We empiri-
cally confirmed that exploiting both features greatly improves representation
power of networks rather than using each independently (see Sec. 4.1), showing
the effectiveness of our design choice. We describe the detailed operation below.

We first aggregate spatial information of a feature map by using both average-
pooling and max-pooling operations, generating two different spatial context de-
scriptors: Fc

avg and Fc
max, which denote average-pooled features and max-pooled

features respectively. Both descriptors are then forwarded to a shared network
to produce our channel attention map Mc ∈ RC×1×1. The shared network is
composed of multi-layer perceptron (MLP) with one hidden layer. To reduce
parameter overhead, the hidden activation size is set to RC/r×1×1, where r is
the reduction ratio. After the shared network is applied to each descriptor, we
merge the output feature vectors using element-wise summation. In short, the
channel attention is computed as:

Mc(F) = σ(MLP (AvgPool(F)) +MLP (MaxPool(F)))

= σ(W1(W0(F
c
avg)) +W1(W0(F

c
max))),

(2)

where σ denotes the sigmoid function, W0 ∈ RC/r×C , and W1 ∈ RC×C/r. Note
that the MLP weights, W0 and W1, are shared for both inputs and the ReLU
activation function is followed by W0.

S. Woo et al. CBAM: Convolutional Block Attention Module ECCV 2018

Each layer has different receptive field size

12 KM

bicubic interpolation from 50 KMCSR from 50 KM

Conditional Super Resolution for WRF downscaling
Data:
(12KM, 50KM) pair, 3-hourly precipitation snapshot in one year

Jan. - Oct. for training <seasonal difference> Nov. and Dec. for testing

Training:
300 epochs

16 mini-batch size

Testing:

Nov. and Dec.

SSIM: 0.86 vs. 0.79, MSE: 0.004 vs. 0.008, Pearson: 0.96 vs. 0.89

Conditional Super Resolution for WRF downscaling

Expected Output (Ground Truth) Spatial Attention 1 Spatial Attention 2

Learned spatial attention

Expected Output (Ground Truth) Spatial Attention 1 Spatial Attention 2

Self-driving Accelerator Operation

1,320 power supply controls the electron beam which provides X-ray radiation

20 years of monitoring every ~60s include: capacitor temperature, current, magnitude temperature, DAC, IGBT and voltage

Currently dozens of failure annually

It will be valuable for APS-U in its early stage or even testing stage.

Detect anomaly and raise alarms?

Predict power supply failure before the weekly maintenance?

Learn from expert, (adapt configuration) fix (some) potential power supply issue?

Can we:

Powered by:

Plan and progress:
Auto-encoder for anomaly detection, to understand if recorded data can (fully) characterize power supply status

Conventional way for anomaly detection, statistical distance between known normal and realtime monitoring. Jensen–

Shannon Divergence (JSD) works fine using 12 hours monitoring.

Machine learning prediction for weekly maintenance intensive care.

Learning from expert for auto-tuning With Michael Borland, Yipeng Sun et al.

Automating HPC Taxonomy at LCFs for Fine Allocation

Z. Liu et al. Characterization and Identification of HPC Applications at Leadership Computing Facility. ICS’2020

0.0 0.2 0.4 0.6 0.8 1.0
)raFtion oI run time

0

20

40

60

80

100

%
 o

I j
ob

s
w

ith
 fr
ac
ti
ot
�
x
 (F

Fd
I))iOe I/2

Comm.
Comp.

Motivation
LCFs collected many logs/datasets for different purpose.

Verify (fingerprinting) if the users are using the system in an appropriate way (actual

application runs closely resembles the proposed usage).

Categorize applications, for example as I/O intensive, communication intensive,

computing intensive, or memory bound.

Such categories can be used to target applications for optimization like *-aware

schedule and allocation, power-cap setting, particularly if they are to be executed

repeatedly (true for LCFs).
We break down runtime to

create labels (i.g., categorize), we

then use hardware counters as

feature to train ML classifier.

We also propose fingerprint

using information at the time of

submission for querying and

identification.

Thanks!

